[1] |
Osada-Oka M, Goda N, Saiga H, et al. Metabolic adaptation to glycolysis is a basic defense mechanism of macrophages for Mycobacterium tuberculosis infection. Int Immunol, 2019, 31(12):781-793. doi:10.1093/intimm/dxz048.
pmid: 31201418
|
[2] |
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023.
|
[3] |
Chakraborty S, Rhee KY. Tuberculosis Drug Development: History and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med, 2015, 5(8):a021147. doi:10.1101/cshperspect.a021147.
|
[4] |
Goswami AB, Karadarevic'D, Castaño-Rodríguez N. Immunity-related GTPase IRGM at the intersection of autophagy, inflammation, and tumorigenesis. Inflamm Res, 2022, 71(7-8):785-795. doi:10.1007/s00011-022-01595-x.
pmid: 35699756
|
[5] |
Nies YH, Yahaya MF, Lim WL, et al. Microarray-based Analysis of Differential Gene Expression Profile in Rotenone-induced Parkinson’s Disease Zebrafish Model. CNS Neurol Disord Drug Targets, 2024, 23(6):761-772. doi:10.2174/1871527322666230608122552.
|
[6] |
Ma Y, Du J, Chen M, et al. Mitochondrial DNA methylation is a predictor of immunotherapy response and prognosis in breast cancer: scRNA-seq and bulk-seq data insights. Front Immunol, 2023, 14:1219652. doi:10.3389/fimmu.2023.1219652.
|
[7] |
Chen J, Liu C, Liang T, et al. Comprehensive analyses of potential key genes in active tuberculosis: A systematic review. Medicine (Baltimore), 2021, 100(30):e26582. doi:10.1097/MD.0000000000026582.
|
[8] |
Lavalett L, Ortega H, Barrera LF. Human Alveolar and Splenic Macrophage Populations Display a Distinct Transcriptomic Response to Infection With Mycobacterium tuberculosis. Front Immunol, 2020, 11:630. doi:10.3389/fimmu.2020.00630.
pmid: 32373118
|
[9] |
Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309):973-977. doi:10.1038/nature09247.
|
[10] |
Zhang X, Chen D, Yang W, et al. Identifying candidate diagnostic markers for tuberculosis: A critical role of co-expression and pathway analysis. Math Biosci Eng, 2019, 16(2):541-552. doi:10.3934/mbe.2019026.
pmid: 30861655
|
[11] |
Li L, Lv J, He Y, et al. Gene network in pulmonary tuberculosis based on bioinformatic analysis. BMC Infect Dis, 2020, 20(1):612. doi:10.1186/s12879-020-05335-6.
pmid: 32811479
|
[12] |
Wang Y, Cui T, Zhang C, et al. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res, 2010, 9(12):6665-6677. doi:10.1021/pr100808n.
pmid: 20973567
|
[13] |
Mulenga H, Zauchenberger CZ, Bunyasi EW, et al. Perfor-mance of diagnostic and predictive host blood transcriptomic signatures for Tuberculosis disease: A systematic review and meta-analysis. PLoS One, 2020, 15(8):e0237574. doi:10.1371/journal.pone.0237574.
|
[14] |
Mulenga H, Fiore-Gartland A, Mendelsohn SC, et al. The effect of host factors on discriminatory performance of a transcriptomic signature of tuberculosis risk. EBioMedicine, 2022, 77:103886. doi:10.1016/j.ebiom.2022.103886.
|
[15] |
Kaforou M, Broderick C, Vito O, et al. Transcriptomics for child and adolescent tuberculosis. Immunol Rev, 2022, 309(1):97-122. doi:10.1111/imr.13116.
pmid: 35818983
|
[16] |
Nahid P, Jarlsberg LG, Kato-Maeda M, et al. Interplay of strain and race/ethnicity in the innate immune response to M.tuberculosis. PLoS One, 2018, 13(5):e0195392. doi:10.1371/journal.pone.0195392.
|
[17] |
de Martino M, Lodi L, Galli L, et al. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr, 2019, 7:350. doi:10.3389/fped.2019.00350.
|
[18] |
Jasenosky LD, Scriba TJ, Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev, 2015, 264(1):74-87. doi:10.1111/imr.12274.
pmid: 25703553
|
[19] |
Basile JI, Kviatcovsky D, Romero MM, et al. Mycobacterium tuberculosis multi-drug-resistant strain M induces IL-17+ IFNγ- CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in patients with MDR-TB tuberculosis. Clin Exp Immunol, 2017, 187(1):160-173. doi:10.1111/cei.12873.
pmid: 27681197
|
[20] |
Imperiale BR, García A, Minotti A, et al. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin Exp Immunol, 2021, 203(2):267-280. doi:10.1111/cei.13544.
pmid: 33128773
|
[21] |
Boni FG, Hamdi I, Moukendza Koundi L, et al. The Gene and Regulatory Network Involved in Ethambutol Resistance in Mycobacterium tuberculosis. Microb Drug Resist, 2023, 29(5):175-189. doi:10.1089/mdr.2021.0239.
|
[22] |
Zhu C, Liu Y, Hu L, et al. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J Biol Chem, 2018, 293(43):16741-16750. doi:10.1074/jbc.RA118.002693.
|
[23] |
Ohmori T, Yamaoka T, Ando K, et al. Molecular and Clinical Features of EGFR-TKI-Associated Lung Injury. Int J Mol Sci, 2021, 22(2):792. doi:10.3390/ijms22020792.
|
[24] |
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health, 2017, 111(5):256-264. doi:10.1080/20477724.2017.1351080.
pmid: 28715935
|
[25] |
Etna MP, Giacomini E, Severa M, et al. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in TB pathogenesis. Semin Immunol, 2014, 26(6):543-551. doi:10.1016/j.smim.2014.09.011.
pmid: 25453229
|
[26] |
Uzorka JW, Bakker JA, van Meijgaarden KE, et al. Biomarkers to identify Mycobacterium tuberculosis infection among borderline QuantiFERON results. Eur Respir J, 2022, 60(2):2102665. doi:10.1183/13993003.02665-2021.
|
[27] |
Delemarre EM, van Hoorn L, Bossink AWJ, et al. Serum Biomarker Profile Including CCL1, CXCL10, VEGF, and Adenosine Deaminase Activity Distinguishes Active From Remotely Acquired Latent Tuberculosis. Front Immunol, 2021, 12:725447. doi:10.3389/fimmu.2021.725447.
|
[28] |
Richardson K. Genes and knowledge: Response to Baverstock, K. the gene an appraisal. Prog Biophys Mol Biol, 2021, 167:12-17. doi:10.1016/j.pbiomolbio.2021.10.003.
|
[29] |
Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol, 2011, 4(3):252-260. doi:10.1038/mi.2011.13.
pmid: 21430655
|
[30] |
Zhang W, Shen XY, Zhang WW, et al. Corrigendum to “Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ” [Toxicol Appl Pharmacol. 2017; 316:17-26. doi:10.1016/j.taap.2016.12.010]. Toxicol Appl Pharmacol, 2022, 449:116091. doi:10.1016/j.taap.2022.11609.
|
[31] |
Shepelkova G, Evstifeev V, Majorov K, et al. Therapeutic Effect of Recombinant Mutated Interleukin 11 in the Mouse Model of Tuberculosis. J Infect Dis, 2016, 214(3):496-501. doi:10.1093/infdis/jiw176.
pmid: 27190186
|
[32] |
Garlanda C, Di Liberto D, Vecchi A, et al. Damping excessive inflammation and tissue damage in Mycobacterium tuberculosis infection by Toll IL-1 receptor 8/single Ig IL-1-related receptor, a negative regulator of IL-1/TLR signaling. J Immunol, 2007, 179(5):3119-3125. doi:10.4049/jimmunol.179.5.3119.
pmid: 17709526
|