中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (6): 792-797.doi: 10.19982/j.issn.1000-6621.20250014
收稿日期:
2025-01-11
出版日期:
2025-06-10
发布日期:
2025-06-11
通信作者:
周琼,Email:基金资助:
Qi Qi, Wang Zihao, Ye Linlin, Peng Wenbei, Zhou Qiong()
Received:
2025-01-11
Online:
2025-06-10
Published:
2025-06-11
Contact:
Zhou Qiong, Email: Supported by:
摘要:
免疫检查点抑制剂(immune checkpoint inhibitors, ICI)的出现彻底改变了肿瘤治疗的格局,为晚期和难治性肿瘤患者带来了新的治疗希望。然而,随着ICI在肿瘤治疗中的广泛应用,其与免疫系统相关的并发症越来越多地引起人们的关注,特别是结核病的发生。笔者旨在系统归纳肿瘤患者接受ICI治疗过程中结核病的发病率及可能的发生机制,为肿瘤患者行ICI治疗前的结核病筛查和临床管理提供新思路。
中图分类号:
齐琦, 王子豪, 叶琳琳, 彭文贝, 周琼. 免疫检查点抑制剂与结核病[J]. 中国防痨杂志, 2025, 47(6): 792-797. doi: 10.19982/j.issn.1000-6621.20250014
Qi Qi, Wang Zihao, Ye Linlin, Peng Wenbei, Zhou Qiong. Immune checkpoint inhibitors and tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 792-797. doi: 10.19982/j.issn.1000-6621.20250014
[1] | Hook EB. Latent Tuberculosis Infection. N Engl J Med, 2022, 386(13):e33. doi:10.1056/NEJMc2200195. |
[2] |
Cheng MP, Abou Chakra CN, Yansouni CP, et al. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis, 2017, 64(5):635-644. doi:10.1093/cid/ciw838.
pmid: 27986665 |
[3] | Chen L, Zhang L, Zhang L, et al. Incidence of active tuberculosis in HIV-infected individuals not receiving universal tuberculosis preventive treatment. Chin Med J (Engl), 2024, 137(22):2761-2763. doi:10.1097/CM9.0000000000003394. |
[4] |
Alemu A, Bitew ZW, Diriba G, et al. Tuberculosis incidence in patients with chronic kidney disease: a systematic review and meta-analysis. Int J Infect Dis, 2022, 122:188-201. doi:10.1016/j.ijid.2022.05.046.
pmid: 35609860 |
[5] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012, 12(4):252-264. doi:10.1038/nrc3239.
pmid: 22437870 |
[6] | Lin X, Kang K, Chen P, et al. Regulatory mechanisms of PD-1/PD-L 1 in cancers. Mol Cancer, 2024, 23(1):108. doi:10.1186/s12943-024-02023-w. |
[7] | Cheng B, Lv J, Xiao Y, et al. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020—2024). Eur J Med Chem, 2025, 283:117141. doi:10.1016/j.ejmech.2024.117141. |
[8] | 付烊, 王俊, 宋羽霄, 等. 中国临床肿瘤学会《免疫检查点抑制剂临床应用指南》2024版更新解读. 医药导报, 2024, 43(8):1181-1186. doi:10.3870/j.issn.1004-0781.2024.08.001. |
[9] |
Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy-current perspectives and future directions. Cell, 2023, 186(8):1652-1669. doi:10.1016/j.cell.2023.03.006.
pmid: 37059068 |
[10] | Suijkerbuijk KPM, van Eijs MJM, van Wijk F, et al. Clinical and translational attributes of immune-related adverse events. Nat Cancer, 2024, 5(4):557-571. doi:10.1038/s43018-024-00730-3. |
[11] |
Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol, 2022, 33(12):1217-1238. doi:10.1016/j.annonc.2022.10.001.
pmid: 36270461 |
[12] | Mon HC, Lee PC, Hung YP, et al. Functional cure of hepatitis B in patients with cancer undergoing immune checkpoint inhibitor therapy. J Hepatol, 2025, 82(1):51-61. doi:10.1016/j.jhep.2024.07.018. |
[13] | Das S, Suarez G, Beswick EJ, et al. Expression of B7-H 1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol, 2006, 176(5):3000-3009. doi:10.4049/jimmunol.176.5.3000. |
[14] | Hamashima R, Uchino J, Morimoto Y, et al. Association of immune checkpoint inhibitors with respiratory infections: A review. Cancer Treat Rev, 2020, 90:102109. doi:10.1016/j.ctrv.2020.102109. |
[15] | Lázár-Molnár E, Gácser A, Freeman GJ, et al. The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum. Proc Natl Acad Sci U S A, 2008, 105(7):2658-2663. doi:10.1073/pnas.0711918105. |
[16] |
Fehrenbacher L, Spira A, POPLAR Study Group, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030):1837-1846. doi:10.1016/S0140-6736(16)00587-0.
pmid: 26970723 |
[17] |
Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol, 1974, 99(2):131-138. doi:10.1093/oxfordjournals.aje.a121593.
pmid: 4810628 |
[18] | Fujita K, Yamamoto Y, Kanai O, et al. Incidence of Active Tuberculosis in Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Open Forum Infect Dis, 2020, 7(5):ofaa126. doi:10.1093/ofid/ofaa126. |
[19] | Morelli T, Fujita K, Redelman-Sidi G, et al. Infections due to dysregulated immunity: an emerging complication of cancer immunotherapy. Thorax, 2022, 77(3):304-311. doi:10.1136/thoraxjnl-2021-217260. |
[20] | Liu K, Wang D, Yao C, et al. Increased Tuberculosis Incidence Due to Immunotherapy Based on PD-1 and PD-L 1 Blockade: A Systematic Review and Meta-Analysis. Front Immunol, 2022, 13:727220. doi:10.3389/fimmu.2022.727220. |
[21] | Chen HW, Kuo YW, Chen CY, et al. Increased Tuberculosis Reactivation Risk in Patients Receiving Immune Checkpoint Inhibitor-Based Therapy. Oncologist, 2024, 29(4):e498-e506. doi:10.1093/oncolo/oyad340. |
[22] | Bae S, Kim YJ, Kim MJ, et al. Risk of tuberculosis in patients with cancer treated with immune checkpoint inhibitors: a nationwide observational study. J Immunother Cancer, 2021, 9(9):e002960. doi:10.1136/jitc-2021-002960. |
[23] |
Reungwetwattana T, Adjei AA. Anti-PD-1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12):2048-2050. doi:10.1016/j.jtho.2016.10.008.
pmid: 27866633 |
[24] |
Dhar C. Testing for latent tuberculosis before starting patients on immune checkpoint inhibitors. Indian J Cancer, 2021, 58(3):469-470. doi:10.4103/ijc.IJC_283_20.
pmid: 34380834 |
[25] | Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD 8 T cells and anti-cancer immunity. Nature, 2019, 565(7741):600-605. doi:10.1038/s41586-019-0878-z. |
[26] | Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475):eaat2702. doi:10.1126/scitranslmed.aat2702. |
[27] |
Walker NF, Stek C, Wasserman S, et al. The tuberculosis-associated immune reconstitution inflammatory syndrome: recent advances in clinical and pathogenesis research. Curr Opin HIV AIDS, 2018, 13(6):512-521. doi:10.1097/COH.0000000000000502.
pmid: 30124473 |
[28] |
O’Garra A, Redford PS, McNab FW, et al. The immune response in tuberculosis. Annu Rev Immunol, 2013, 31:475-527. doi:10.1146/annurev-immunol-032712-095939.
pmid: 23516984 |
[29] |
Elkington PT, Friedland JS. Permutations of time and place in tuberculosis. Lancet Infect Dis, 2015, 15(11):1357-1360. doi:10.1016/S1473-3099(15)00135-8.
pmid: 26321650 |
[30] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis, 2013, 208(4):603-615. doi:10.1093/infdis/jit206.
pmid: 23661793 |
[31] | Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res, 2023, 273:127393. doi:10.1016/j.micres.2023.127393. |
[32] |
Vaddi A, Hulsebus HJ, O’Neill EL, et al. A narrative review of the controversy on the risk of mycobacterial infections with immune checkpoint inhibitor use: does Goldilocks have the answer?. J Thorac Dis, 2024, 16(2):1601-1624. doi:10.21037/jtd-23-1395.
pmid: 38505086 |
[33] | Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi:10.7554/eLife.52668. |
[34] | 赵祥, 程渊, 张蒙, 等. 接受免疫检查点抑制剂治疗的晚期肺癌患者的潜伏结核感染及活动性结核病管理. 中华医学杂志, 2022, 102(6):454-462. doi:10.3760/cma.j.cn112137-20211018-02305. |
[35] | Ruiz-de la Cruz ML, Salinas-Carmona MC. The immune exhaustion paradox: activated functionality during chronic bacterial infections. J Infect Dev Ctries, 2024, 18(12):1824-1836. doi:10.3855/jidc.19754. |
[36] |
Fujita K, Terashima T, Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12):2238-2240. doi:10.1016/j.jtho.2016.07.006.
pmid: 27423391 |
[37] | Chu YC, Fang KC, Chen HC, et al. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol, 2017, 12(8):e111-e114. doi:10.1016/j.jtho.2017.03.012. |
[38] |
Takata S, Koh G, Han Y, et al. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents. J Infect Chemother, 2019, 25(1):54-58. doi:10.1016/j.jiac.2018.06.016.
pmid: 30055859 |
[39] | Sun CY, Shen CI, Feng JY, et al. Severe hepatitis related to immune-checkpoint inhibitor in a patient with non-small-cell lung cancer and pulmonary tuberculosis. Postgrad Med J, 2021, 97(1151):556-557. doi:10.1136/postgradmedj-2020-138123. |
[40] | 熊坤龙, 程训佳, 张文宏, 等. 中性粒细胞在抗结核免疫中的作用. 微生物与感染, 2018, 13(3):186-192. doi:10.3969/j.issn.1673-6184.2018.03.008. |
[41] | Borkute RR, Woelke S, Pei G, et al. Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci, 2021, 22(9):4801. doi:10.3390/ijms22094801. |
[42] | Pedrosa J, Saunders BM, Appelberg R, et al. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun, 2000, 68(2):577-583. doi:10.1128/IAI.68.2.577-583.2000. |
[43] | 温淑芳, 魏荣荣, 李浩然, 等. CD4+和CD8+T细胞在结核病免疫应答中的作用. 中国防痨杂志, 2024, 46(4):479-484. doi:10.19982/j.issn.1000-6621.20230452. |
[44] | Delanoy N, Michot JM, Comont T, et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L 1 immunotherapy: a descriptive observational study. Lancet Haematol, 2019, 6(1):e48-e57. doi:10.1016/S2352-3026(18)30175-3. |
[45] | Im Y, Lee J, Kim SJ, et al. Development of tuberculosis in cancer patients receiving immune checkpoint inhibitors. Respir Med, 2020, 161:105853. doi:10.1016/j.rmed.2019.105853. |
[46] | Byeon S, Cho JH, Jung HA, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence. Cancer Med, 2020, 9(7):2352-2362. doi:10.1002/cam4.2868. |
[47] | Zhang YB, Liu SJ, Hu ZD, et al. Increased Th17 activation and gut microbiota diversity are associated with pembrolizumab-triggered tuberculosis. Cancer Immunol Immunother, 2020, 69(12):2665-2671. doi:10.1007/s00262-020-02687-5. |
[48] | Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol, 2021, 6(55):eabf3861. doi:10.1126/sciimmunol.abf3861. |
[49] | Dobler CC, Cheung K, Nguyen J, et al. Risk of tuberculosis in patients with solid cancers and haematological malignancies: a systematic review and meta-analysis. Eur Respir J, 2017, 50(2):1700157. doi:10.1183/13993003.00157-2017. |
[50] |
US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening for Latent Tuberculosis Infection in Adults: US Preventive Services Task Force Recommendation Statement. JAMA, 2023, 329(17):1487-1494. doi:10.1001/jama.2023.4899.
pmid: 37129649 |
[51] | He Y, Peng D, Liang P, et al. Immune Checkpoint Inhibitors and Tuberculosis Infection in Lung Cancer: A Case Series and Systematic Review With Pooled Analysis. J Clin Pharmacol, 2023, 63(4):397-409. doi:10.1002/jcph.2170. |
[52] |
Zhu J, He Z, Liang D, et al. Pulmonary tuberculosis associated with immune checkpoint inhibitors: a pharmacovigilance study. Thorax, 2022, 77(7):721-723. doi:10.1136/thoraxjnl-2021-217575.
pmid: 35277447 |
[53] | Sun W, Zhang L, Liang J, et al. Comparison of clinical and imaging features between pulmonary tuberculosis complicated with lung cancer and simple pulmonary tuberculosis: a systematic review and meta-analysis. Epidemiol Infect, 2022, 150:e43. doi:10.1017/S0950268822000176. |
[54] | Picchi H, Mateus C, Chouaid C, et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. Clin Microbiol Infect, 2018, 24(3):216-218. doi:10.1016/j.cmi.2017.12.003. |
[55] |
Tsai CC, Chen JH, Wang YC, et al. Re-activation of pulmonary tuberculosis during anti-programmed death-1 (PD-1) treatment. QJM, 2019, 112(1):41-42. doi:10.1093/qjmed/hcy243.
pmid: 30351391 |
[56] | Papadaki E, Katerina M, Anastasios B, et al. Tuberculosis Infection in a Patient with Lung Cancer under PD-L1 Inhibition: A Case Report. J Tubercul Research, 2020, 8:158-164. doi:10.4236/jtr.2020.83014. |
[57] | Fujita T, Endo M, Gu Y, et al. Mycobacterium tuberculosis infection in cancer patients at a tertiary care cancer center in Japan. J Infect Chemother, 2014, 20(3):213-216. doi:10.1016/j.jiac.2013.11.005. |
[58] | Ho JC, Leung CC. Management of co-existent tuberculosis and lung cancer. Lung Cancer, 2018, 122:83-87. doi:10.1016/j.lungcan.2018.05.030. |
[59] | Lin C, Xu G, Gao S, et al. Tuberculosis infection following immune checkpoint inhibitor treatment for advanced cancer: a case report and literature review. Front Immunol, 2023, 14:1162190. doi:10.3389/fimmu.2023.1162190. |
[60] | Yamamiya I, Hunt A, Takenaka T, et al. Evaluation of the Cytochrome P 450 3A and P-glycoprotein Drug-Drug Interaction Potential of Futibatinib. Clin Pharmacol Drug Dev, 2023, 12(10):966-978. doi:10.1002/cpdd.1259. |
[61] | Morita TO, Hanada K. Physiologically based pharmacokinetic modeling of ponatinib to describe drug-drug interactions in patients with cancer. Cancer Chemother Pharmacol, 2022, 90(4):315-323. doi:10.1007/s00280-022-04466-8. |
[62] | 中国药师协会肿瘤专科药师分会, 中国抗癌协会肿瘤临床药学专业委员会, 浙江省抗癌协会肿瘤临床药学专业委员会, 等. 聚腺苷二磷酸核糖聚合酶抑制剂药物相互作用管理中国专家共识(2023版). 中华肿瘤杂志, 2023, 45(7):585-594. doi:10.3760/cma.j.cn112152-20221223-00849. |
[63] | Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet, 2003, 42(9):819-850. doi:10.2165/00003088-200342090-00003. |
[64] |
Nilles J, Weiss J, Sauter M, et al. Comprehensive in vitro analysis evaluating the variable drug-drug interaction risk of rifampicin compared to rifabutin. Arch Toxicol, 2023, 97(8):2219-2230. doi:10.1007/s00204-023-03531-2.
pmid: 37285043 |
[65] | 徐彩红, 周向梅, 范伟兴, 等. 我国结核病防治主要成就回眸及亟待解决的问题与建议. 中国防痨杂志, 2020, 42(12):1263-1267. doi:10.3969/j.issn.1000-6621.2020.12.002. |
[66] | 王歆尧, 姜美丽, 庞元捷, 等. 中国结核病疾病负担现状. 中华流行病学杂志, 2024, 45(6):857-864. doi:10.3760/cma.j.cn112338-20240311-00111. |
[67] | 国家疾病预防控制局. 关于印发《全国结核病防治规划(2024—2030年)》的通知. 国疾控传防发〔2024〕19号. 2024-12-05. |
[68] |
Sirgiovanni M, Hinterleitner C, Horger M, et al. Long-term remission of small cell lung cancer after reactivation of tuberculosis following immune-checkpoint blockade: A case report. Thorac Cancer, 2021, 12(5):699-702. doi:10.1111/1759-7714.13821.
pmid: 33458956 |
[1] | 姚秀钰, 杜莹, 陈斯婕, 耿红, 高磊. 传染性肺结核患者居家隔离治疗管理期间常见的护理问题与对策[J]. 中国防痨杂志, 2025, 47(6): 681-686. |
[2] | 欧喜超, 滕冲, 宋媛媛, 郑扬, 陈磊, 朱俊, 王建国, 潘兆宝, 康海涛, 王彦, 么鸿雁, 黄飞. 新型PCR荧光探针技术用于结核病患者早期诊断的多中心应用评价研究[J]. 中国防痨杂志, 2025, 47(6): 687-693. |
[3] | 谢忠尧, 张慕丽, 曹廷明, 曹洋, 孙照刚. 基于特异性配体蛋白SMAD2检测法用于活动性结核病的诊断价值研究[J]. 中国防痨杂志, 2025, 47(6): 694-700. |
[4] | 赵琰枫, 屠霞, 王嫩寒, 陈双双, 田丽丽, 樊瑞芳, 于兰, 李洁, 李传友, 代小伟. 三种检测方法在肺结核患者病原学阳性检出中的贡献分析[J]. 中国防痨杂志, 2025, 47(6): 701-707. |
[5] | 李雪莲, 朱庆东, 马怡静, 吐送江·买托合提, 米日古丽·买托合提, 王庆枫, 马丽萍, 初乃惠, 聂文娟, 林艳荣, 李纬, 王敬. 利奈唑胺血液系统不良反应发生率及危险因素分析:一项多中心队列研究[J]. 中国防痨杂志, 2025, 47(6): 719-726. |
[6] | 彭华, 崔俊伟, 尚秋白, 李四清, 彭瑞琴. 跨理论模型联合健康信念模型护理干预在肺结核合并慢性阻塞性肺疾病患者中的应用效果[J]. 中国防痨杂志, 2025, 47(6): 727-731. |
[7] | 王涵飞, 李锦浩, 文雅欣, 徐彩红. 2021年我国利福平耐药肺结核患者诊疗延迟及影响因素分析[J]. 中国防痨杂志, 2025, 47(6): 738-745. |
[8] | 师晓晶, 郭建花, 王鑫, 赵清冉, 王雨涵. 石家庄市结核分枝杆菌潜伏感染者预防性治疗接受度及影响因素研究[J]. 中国防痨杂志, 2025, 47(6): 746-752. |
[9] | 张曼晖, 张梦迪, 卢征, 李俊琦, 郑文静, 王鑫, 黄飞, 刘剑君, 么鸿雁, 王琦琦. 2005—2020年中国老年人群肺结核疾病负担趋势分析[J]. 中国防痨杂志, 2025, 47(6): 753-759. |
[10] | 李玉红, 梅金周, 李雪, 张慧, 刘小秋, 赵雁林. 2018—2022年全国跨省流动肺结核患者流行特征分析[J]. 中国防痨杂志, 2025, 47(6): 760-768. |
[11] | 石洁, 常文静, 郑丹薇, 苏茹月, 马晓光, 朱岩昆, 王少华, 孙建伟, 孙定勇. 基于GEO数据库筛选结核病关键基因及信号通路的研究[J]. 中国防痨杂志, 2025, 47(6): 769-778. |
[12] | 魏潇芮, 于泽洋, 杨琨, 周柯, 黄芳, 刘昊, 白露, 刘家云. 结核分枝杆菌感染者外周血单个核细胞中肝激酶B1的表达及其与γ-干扰素的相关性[J]. 中国防痨杂志, 2025, 47(6): 779-784. |
[13] | 李维, 周志超, 郑洁. 1995—2023年中国耐多药结核病研究的态势和热点分析[J]. 中国防痨杂志, 2025, 47(6): 785-791. |
[14] | 黄伟强, 袁楚楚, 张欢, 王丽丽, 钟小锋, 陈星星, 胡明. 45例有创机械通气重症结核病患者静脉使用抗结核药物血药浓度分析[J]. 中国防痨杂志, 2025, 47(6): 798-807. |
[15] | 田秀丽, 李青, 舒新云, 兰远波, 宗兆婧. 含贝达喹啉抗结核方案治疗准广泛耐药肠结核一例[J]. 中国防痨杂志, 2025, 47(6): 808-810. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||