[1] |
Sotgiu G, Centis R, D’Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J, 2012, 40(6):1430-1442. doi:10.1183/09031936.00022912.
pmid: 22496332
|
[2] |
World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019.
|
[3] |
Dong H, Wang X, Dong Y, et al. Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents, 2011, 38(4):296-300. doi:10.1016/j.ijantimicag.2011.05.007.
|
[4] |
Caminero JA, Sotgiu G, Zumla A, et al. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis, 2010, 10(9):621-629. doi:10.1016/S1473-3099(10)70139-0.
pmid: 20797644
|
[5] |
Bolhuis MS, van Altena R, Uges DR, et al. Clarithromycin significantly increases linezolid serum concentrations. Antimicrob Agents Chemother, 2010, 54(12):5418-5419. doi:10.1128/AAC.00757-10.
pmid: 20837753
|
[6] |
王颖, 蔡春葵, 许岩, 等. 利奈唑胺治疗广泛耐药肺结核疗效分析. 结核与肺部疾病杂志, 2020, 1(2):136-139. doi:10.3969/j.issn.2096-8493.2020.02.009.
|
[7] |
Liu X, Aoki M, Osa S, et al. Safety of linezolid in patients with decreased renal function and trough monitoring: a systematic review and meta-analysis. BMC Pharmacol Toxicol, 2022, 23(1): 9. doi:10.1186/s40360-022-00628-9.
|
[8] |
Maray I, Rodríguez-Ferreras A, Álvarez-Asteinza C, et al. Linezolid induced thrombocytopenia in critically ill patients: Risk factors and development of a machine learning-based prediction model. J Infect Chemother, 2022, 28(9):1249-1254. doi:10.1016/j.jiac.2022.05.004.
|
[9] |
Qin Y, Chen Z, Gao S, et al. Development and validation of a risk prediction model for linezolid-induced thrombocytopenia in elderly patients. Eur J Hosp Pharm, 2024, 31(2):94-100. doi:10.1136/ejhpharm-2022-003258.
|
[10] |
Han X, Wang J, Zan X, et al. Risk factors for linezolid-induced thrombocytopenia in adult inpatients. Int J Clin Pharm, 2022, 44(2):330-338. doi:10.1007/s11096-021-01342-y.
|
[11] |
Tsuji Y, Hiraki Y, Matsumoto K, et al. Thrombocytopenia and anemia caused by a persistent high linezolid concentration in patients with renal dysfunction. J Infect Chemother, 2011, 17(1):70-75. doi:10.1007/s10156-010-0080-6.
pmid: 20582446
|
[12] |
Pratama NYI, Zulkarnain BS, Soedarsono, et al. Hematological side effect analysis of linezolid in MDR-TB patients with individual therapy. J Basic Clin Physiol Pharmacol, 2021, 32(4):777-781. doi:10.1515/jbcpp-2020-0468.
pmid: 34214355
|
[13] |
World Health Organization. WHO consolidated guidelines on tuberculosis: Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022.
|
[14] |
Millard J, Pertinez H, Bonnett L, et al. Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. J Antimicrob Chemother, 2018, 73(7):1755-1762. doi:10.1093/jac/dky096.
pmid: 29584861
|
[15] |
Shiromwar SS, Khan AH, Chidrawar V. A systematic review on extensively drug-resistant tuberculosis from 2009 to 2020: special emphases on treatment outcomes. Rev Esp Quimioter, 2023, 36(1):30-44. doi:10.37201/req/029.2022.
|
[16] |
World Health Organization. Global tuberculosis report 2023:executive summary. Geneva: World Health Organization, 2023.
|
[17] |
Wang TL, Guo DH, Bai Y, et al. Thrombocytopenia in Patients Receiving Prolonged Linezolid May be Caused by Oxidative Stress. Clin Drug Investig, 2016, 36(1):67-75. doi:10.1007/s40261-015-0352-0.
|
[18] |
Pea F, Viale P, Cojutti P, et al. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother, 2012, 67(8):2034-2042. doi:10.1093/jac/dks153.
pmid: 22553142
|
[19] |
Zhang D, Xu Y, Wang X, et al. Risk factors for thrombocytopenia in patients receiving linezolid therapy: a systematic review and meta-analysis. Eur J Clin Pharmacol, 2023, 79(10):1303-1314. doi:10.1007/s00228-023-03542-z.
pmid: 37578552
|
[20] |
Shi Y, Wu HL, Wu YH, et al. Safety and clinical efficacy of linezolid in children: a systematic review and meta-analysis. World J Pediatr, 2023, 19(2):129-138. doi:10.1007/s12519-022-00650-1.
|
[21] |
Polasa K, Murthy KJ, Krishnaswamy K. Rifampicin kinetics in undernutrition. Br J Clin Pharmacol, 1984, 17(4): 481-484. doi:10.1111/j.1365-2125.1984.tb02377.x.
|
[22] |
Fage D, Aalhoul F, Cotton F. Protein binding investigation of first-line and second-line antituberculosis drugs. Int J Antimicrob Agents, 2023, 62(6): 106999. doi:10.1016/j.ijantimicag.2023.106999.
|
[23] |
Morata L, De la Calle C, Gómez-Cerquera JM, et al. Risk factors associated with high linezolid trough plasma concentrations. Expert Opin Pharmacother, 2016, 17(9):1183-1187. doi:10.1080/14656566.2016.1182154.
pmid: 27156708
|
[24] |
Zhang P, Li W, Liu M, et al. Linezolid-Associated Neuropathy in Patients with MDR/XDR Tuberculosis in Shenzhen, China. Infect Drug Resist, 2022, 15:2617-2624. doi:10.2147/IDR.S365371.
pmid: 35634579
|
[25] |
王红红, 郭少晨, 周文强, 等. 耐药结核病患者利奈唑胺血药浓度对血液系统毒性发生的影响. 中国防痨杂志, 2023, 45(2):165-171. doi:10.19982/j.issn.1000-6621.20220301.
|