中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (12): 1527-1534.doi: 10.19982/j.issn.1000-6621.20240347
收稿日期:
2024-08-18
出版日期:
2024-12-10
发布日期:
2024-12-03
通信作者:
陈志,Email:chenzhidoctor@126.com
基金资助:
Received:
2024-08-18
Online:
2024-12-10
Published:
2024-12-03
Contact:
Chen Zhi, Email: chenzhidoctor@126.com
Supported by:
摘要:
由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引起的结核病是全球最主要的传染病之一,但目前对于MTB和宿主之间的相互作用机制知之甚少。动物模型和3D细胞模型为结核病的研究提供了更加全面和复杂的实验环境,有助于模拟疾病的多个方面。笔者对动物模型和3D细胞模型在结核病研究中的应用等方面进行综述,以期能为结核病的预防、诊断和治疗开辟新的途径。
中图分类号:
黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. doi: 10.19982/j.issn.1000-6621.20240347
Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. doi: 10.19982/j.issn.1000-6621.20240347
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol, 2023, 14: 1260859. doi:10.3389/fimmu.2023.1260859. |
[3] | Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020, 77(10): 1859-1878. doi:10.1007/s00018-019-03353-5. |
[4] | Fonseca KL, Rodrigues PNS, Olsson IAS, et al. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog, 2017, 13(8): e1006421. doi:10.1371/journal.ppat.1006421. |
[5] | Gong W, Liang Y, Wu X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. Biomed Res Int, 2020, 2020: 4263079. doi:10.1155/2020/4263079. |
[6] | Smith CM, Baker RE, Proulx MK, et al. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. Elife, 2022, 11: e74419. doi:10.7554/eLife.74419. |
[7] | Perlman RL. Mouse models of human disease: An evolutionary perspective. Evol Med Public Health, 2016, 2016(1): 170-176. doi:10.1093/emph/eow014. |
[8] | 朱婷婷, 王明哲, 刘万里. MTB感染小鼠动物模型的建立及研究现状. 疾病预防控制通报, 2024, 39(3):93-96. doi:10.13215/j.cnki.jbyfkztb.2401007. |
[9] | Jia Q, Masleša-Galic'S, Nava S, et al. Listeria-vectored multi-antigenic tuberculosis vaccine protects C57BL/6 and BALB/c mice and guinea pigs against Mycobacterium tuberculosis challenge. Commun Biol, 2022, 5(1): 1388. doi:10.1038/s42003-022-04345-1. |
[10] |
Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res, 2018, 147(5): 456-463. doi:10.4103/ijmr.IJMR_554_18.
pmid: 30082569 |
[11] | Plumlee CR, Duffy FJ, Gern BH, et al. Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis. Cell Host Microbe, 2021, 29(1): 68-82. e5. doi:10.1016/j.chom.2020.10.003. |
[12] | Plumlee CR, Barrett HW, Shao DE, et al. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog, 2023, 19(11): e1011825. doi:10.1371/journal.ppat.1011825. |
[13] | Soldevilla P, Vilaplana C, Cardona PJ. Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens, 2022, 12(1): 49. doi:10.3390/pathogens12010049. |
[14] | Seto S, Nakamura H, Guo TC, et al. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol, 2022, 12: 968543. doi:10.3389/fcimb.2022.968543. |
[15] | Ramey ME, Kaya F, Bauman AA, et al. Drug distribution and efficacy of the DprE 1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother, 2023, 67(11):e0059723. doi:10.1128/aac.00597-23. |
[16] | Nandi B, Behar SM. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med, 2011, 208(11): 2251-2262. doi:10.1084/jem.20110919. |
[17] | Allie N, Grivennikov SI, Keeton R, et al. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep, 2013, 3: 1809. doi:10.1038/srep01809. |
[18] | Corleis B, Bastian M, Hoffmann D, et al. Animal models for COVID-19 and tuberculosis. Front Immunol, 2023, 14: 1223260. doi:10.3389/fimmu.2023.1223260. |
[19] | Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol, 2020, 174: 113711. doi:10.1016/j.bcp.2019.113711. |
[20] | Lepard M, Yang JX, Afkhami S, et al. Comparing Current and Next-Generation Humanized Mouse Models for Advancing HIV and HIV/Mtb Co-Infection Studies. Viruses, 2022, 14(9): 1927. doi:10.3390/v14091927. |
[21] | Bohórquez JA, Adduri S, Ansari D, et al. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol, 2024, 15: 1395018. doi:10.3389/fimmu.2024.1395018. |
[22] | Yang F, Labani-Motlagh A, Bohorquez JA, et al. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol, 2024, 7(1): 294. doi:10.1038/s42003-024-06006-x. |
[23] | Sergeeva M, Romanovskaya-Romanko E, Zabolotnyh N, et al. Mucosal Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens Provides Protection against Mycobacterium tuberculosis in Mice and Guinea Pigs. Vaccines (Basel), 2021, 9(4): 394. doi:10.3390/vaccines9040394. |
[24] | Yang HJ, Wang D, Wen X, et al. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol, 2021, 11: 613149. doi:10.3389/fcimb.2021.613149. |
[25] | Eckhardt E, Li Y, Mamerow S, et al. Pharmacokinetics and Efficacy of the Benzothiazinone BTZ-043 against Tuberculous Mycobacteria inside Granulomas in the Guinea Pig Model. Antimicrob Agents Chemother, 2023, 67(4): e0143822. doi:10.1128/aac.01438-22. |
[26] | Creissen E, Izzo L, Dawson C, et al. Guinea Pig Model of Mycobacterium tuberculosis Infection. Curr Protoc, 2021, 1(12): e312. doi:10.1002/cpz1.312. |
[27] | Luo G, Zeng D, Liu J, et al. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol, 2024, 115(3): 525-535. doi:10.1093/jleuko/qiad145. |
[28] | Salina EG, Makarov V. Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms, 2022, 10(12): 2334. doi:10.3390/microorganisms10122334. |
[29] | Cheng T, Kam JY, Johansen MD, et al. High content analysis of granuloma histology and neutrophilic inflammation in adult zebrafish infected with Mycobacterium marinum. Micron, 2020, 129: 102782. doi:10.1016/j.micron.2019.102782. |
[30] | Gao Y, Li J, Guo X, et al. L-Tyrosine Limits Mycobacterial Survival in Tuberculous Granuloma. Pathogens, 2023, 12(5): 654. doi:10.3390/pathogens12050654. |
[31] | Varela M, Meijer AH. A fresh look at mycobacterial pathogenicity with the zebrafish host model. Mol Microbiol, 2022, 117(3): 661-669. doi:10.1111/mmi.14838. |
[32] | Muñoz-Sánchez S, Varela M, van der Vaart M, et al. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. Biology (Basel), 2023, 12(6): 817. doi:10.3390/biology12060817. |
[33] | Basheer F, Sertori R, Liongue C, et al. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders?. Int J Mol Sci, 2023, 24(7): 6468. doi:10.3390/ijms24076468. |
[34] | Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, et al. Integrating fish models in tuberculosis vaccine development. Dis Model Mech, 2020, 13(8): dmm045716. doi:10.1242/dmm.045716. |
[35] |
Bailone RL, Fukushima HCS, Ventura Fernandes BH, et al. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res, 2020, 36: 13. doi:10.1186/s42826-020-00042-4.
pmid: 32382525 |
[36] | Parikka M, Hammarén MM, Harjula SK, et al. Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathog, 2012, 8(9): e1002944. doi:10.1371/journal.ppat.1002944. |
[37] | Hunter L, Ruedas-Torres I, Agulló-Ros I, et al. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci, 2023, 10: 1264833. doi:10.3389/fvets.2023.1264833. |
[38] | 涂振阳, 蓝常贡, 谢克恭, 等. 兔结核病模型的应用研究进展. 微生物学杂志, 2019, 39(6):102-108. doi:10.3969/j.issn.1005-7021.2019.06.014. |
[39] | Hunter L, Hingley-Wilson S, Stewart GR, et al. Dynamics of Macrophage, T and B Cell Infiltration Within Pulmonary Granulomas Induced by Mycobacterium tuberculosis in Two Non-Human Primate Models of Aerosol Infection. Front Immunol, 2022, 12: 776913. doi:10.3389/fimmu.2021.776913. |
[40] | Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol, 2021, 6(55): eabf3861. doi:10.1126/sciimmunol.abf3861. |
[41] | Sibley L, Daykin-Pont O, Sarfas C, et al. Differences in host immune populations between rhesus macaques and cynomolgus macaque subspecies in relation to susceptibility to Mycobacterium tuberculosis infection. Sci Rep, 2021, 11(1): 8810. doi:10.1038/s41598-021-87872-x. |
[42] | PLOS ONE Staff. Correction: reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One, 2015, 10(4): e0124221. doi:10.1371/journal.pone.0124221. |
[43] |
Larson EC, Ellis-Connell A, Rodgers MA, et al. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. J Immunol, 2021, 207(1): 175-188. doi:10.4049/jimmunol.2100073.
pmid: 34145063 |
[44] | 马嘉烨, 徐进川, 晏博, 等. 结核潜伏感染动物模型的研究进展. 微生物与感染, 2021, 16(5): 363-372. doi:10.3969/j.issn.1673-6184.2021.05.011. |
[45] | 郭佳俊, 邱燕, 胡璨, 等. 3D结核球模型的构建及特性验证:基于人髓系THP-1细胞与卡介苗. 南方医科大学学报, 2023, 43(12):2095-2102. doi:10.12122/j.issn.1673-4254.2023.12.14. |
[46] | Mukundan S, Singh P, Shah A, et al. In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9(9): 1209. doi:10.3390/biomedicines9091209. |
[47] | Bielecka MK, Tezera LB, Zmijan R, et al. A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis. mBio, 2017, 8(1): e02073-16. doi:10.1128/mBio.02073-16. |
[48] |
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res, 2022, 390(3): 317-333. doi:10.1007/s00441-022-03686-x.
pmid: 36178558 |
[49] | Hughes T, Dijkstra KK, Rawlins EL, et al. Open questions in human lung organoid research. Front Pharmacol, 2023, 13: 1083017. doi:10.3389/fphar.2022.1083017. |
[50] |
Ettayebi K, Crawford SE, Murakami K, et al. Replication of human noroviruses in stem cell-derived human enteroids. Science, 2016, 353(6306): 1387-1393. doi:10.1126/science.aaf5211.
pmid: 27562956 |
[51] | Estes MK, Ettayebi K, Tenge VR, et al. Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses, 2019, 11(7): 638. doi:10.3390/v11070638. |
[52] | Kühl L, Graichen P, von Daacke N, et al. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells, 2023, 12(16): 2067. doi:10.3390/cells12162067. |
[53] | Iakobachvili N, Leon-Icaza SA, Knoops K, et al. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol, 2022, 117(3): 682-692. doi:10.1111/mmi.14824. |
[54] | Evans KV, Lee JH. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med, 2020, 9(8): 867-881. doi:10.1002/sctm.19-0433. |
[55] | Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165. doi:10.1152/ajpcell.00120.2020. |
[56] | Lu T, Cao Y, Zhao P, et al. Organoid: a powerful tool to study lung regeneration and disease. Cell Regen, 2021, 10(1): 21. doi:10.1186/s13619-021-00082-8. |
[57] | 朱国峰, 刘晓清. 结核病比较免疫学时代的机遇和挑战. 结核与肺部疾病杂志, 2020, 1(4):195-212. doi:10.3969/j.issn.2096-8493.2020.03.002. |
[58] | Basaraba RJ, Hunter RL. Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. Microbiol Spectr, 2017, 5(3). doi:10.1128/microbiolspec.TBTB2-0029-2016. |
[59] | 钟鹏飞, 保鹏涛, 檀英霞. 人肺类器官用于肺结核病研究进展及前景. 中国药理学与毒理学杂志, 2022, 36(8):612-618. doi:10.3867/j.issn.1000-3002.2022.08.008. |
[60] | Novelli G, Spitalieri P, Murdocca M, et al. Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol, 2023, 10: 1059579. doi:10.3389/fcell.2022.1059579. |
[1] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[4] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[5] | 宋云林, 布祖克拉·阿布都艾尼, 王桂荣, 张继园, 鲁晓擘. 钙结合蛋白S100A12与中性粒细胞胞外诱捕网形成在重症肺结核患者肺损伤中作用机制研究进展[J]. 中国防痨杂志, 2025, 47(4): 513-519. |
[6] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[7] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[8] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[9] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[10] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[11] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[12] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[13] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[14] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[15] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||