中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (12): 1535-1540.doi: 10.19982/j.issn.1000-6621.20240264
收稿日期:
2024-06-26
出版日期:
2024-12-10
发布日期:
2024-12-03
通信作者:
王丽,Email:wangli_shph@tongji.edu.cn
基金资助:
Du Shanshan, Sha Wei, Wang Li()
Received:
2024-06-26
Online:
2024-12-10
Published:
2024-12-03
Contact:
Wang Li, Email: wangli_shph@tongji.edu.cn
Supported by:
摘要:
随着人口老龄化程度逐年上升,结构性肺病患者不断增多,非结核分枝杆菌肺病(non-tuberculous mycobacteria pulmonary disease, NTM-PD)的发病率呈现增高趋势。大多数NTM-PD患者发病时已存在基础肺病,常同时合并感染多种病原微生物,进一步增加了NTM病诊治和疗效判定的难度,合并感染成为导致NTM-PD治疗成功率低和复发率高的重要原因之一。作者通过检索相关文献,对NTM合并感染的研究进展进行综述,以丰富临床工作者对NTM-PD患者肺部合并感染的认识,研究临床干预策略。
中图分类号:
杜姗姗, 沙巍, 王丽. 非结核分枝杆菌与其他呼吸道病原微生物合并感染的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1535-1540. doi: 10.19982/j.issn.1000-6621.20240264
Du Shanshan, Sha Wei, Wang Li. Research progress on co-infection of non-tuberculous mycobacteria and other respiratory pathogens[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1535-1540. doi: 10.19982/j.issn.1000-6621.20240264
[1] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014, 18(11):1370-1377. doi:10.5588/ijtld.14.0120.
pmid: 25299873 |
[2] | 罗雪娇, 沙巍. 《非结核分枝杆菌病诊断》解读. 结核与肺部疾病杂志, 2021, 2(2): 116-119. doi:10.3969/j.issn.2096-8493.2021.02.005. |
[3] |
Zweijpfenning SMH, Ingen JV, Hoefsloot W. Geographic Distribution of Nontuberculous Mycobacteria Isolated from Clinical Specimens: A Systematic Review. Semin Respir Crit Care Med, 2018, 39(3): 336-342. doi:10.1055/s-0038-1660864.
pmid: 30071548 |
[4] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[5] | Fujita K, Ito Y, Hirai T, et al. Prevalence and risk factors for chronic co-infection in pulmonary Mycobacterium avium complex disease. BMJ Open Respir Res, 2014, 1(1): e000050. doi:10.1136/bmjresp-2014-000050. |
[6] | Urabe N, Sakamoto S, Sano G, et al. Characteristics of patients with bronchoscopy-diagnosed pulmonary Mycobacterium avium complex infection. J Infect Chemother, 2018, 24(10): 822-827. doi:10.1016/j.jiac.2018.06.014. |
[7] | Wang G, Stapleton JT, Baker AW, et al. Clinical Features and Treatment Outcomes of Pulmonary Mycobacterium avium-intracellulare Complex With and Without Coinfections. Open Forum Infect Dis, 2022, 9(8): ofac375. doi:10.1093/ofid/ofac375. |
[8] | Ito M, Furuuchi K, Fujiwara K, et al. Multiple bacterial culture positivity reflects the severity and prognosis as bronchiectasis in Mycobacterium avium complex pulmonary disease. Respir Med, 2023, 219: 107417. doi:10.1016/j.rmed.2023.107417. |
[9] |
Takeda K, Imamura Y, Takazono T, et al. The risk factors for developing of chronic pulmonary aspergillosis in nontuberculous mycobacteria patients and clinical characteristics and outcomes in chronic pulmonary aspergillosis patients coinfected with nontuberculous mycobacteria. Med Mycol, 2016, 54(2): 120-127. doi:10.1093/mmy/myv093.
pmid: 26531100 |
[10] | Kamata H, Asakura T, Suzuki S, et al. Impact of chronic Pseudomonas aeruginosa infection on health-related quality of life in Mycobacterium avium complex lung disease. BMC Pulm Med, 2017, 17(1): 198. doi:10.1186/s12890-017-0544-x. |
[11] |
Wickremasinghe M, Ozerovitch LJ, Davies G, et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax, 2005, 60(12):1045-1051. doi:10.1136/thx.2005.046631.
pmid: 16227333 |
[12] |
Orme IM, Ordway DJ. Host response to nontuberculous mycobacterial infections of current clinical importance. Infect Immun, 2014, 82(9): 3516-3522. doi:10.1128/IAI.01606-13.
pmid: 24914222 |
[13] | Honda JR, Knight V, Chan ED. Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med, 2015, 36(1): 1-11. doi:10.1016/j.ccm.2014.10.001. |
[14] | Fowler CJ, Olivier KN, Leung JM, et al. Abnormal nasal nitric oxide production, ciliary beat frequency, and Toll-like receptor response in pulmonary nontuberculous mycobacterial disease epithelium. Am J Respir Crit Care Med, 2013, 187(12):1374-1381. doi:10.1164/rccm.201212-2197OC. |
[15] |
Zoumot Z, Boutou AK, Gill SS, et al. Mycobacterium avium complex infection in non-cystic fibrosis bronchiectasis. Respirology, 2014, 19(5):714-722. doi:10.1111/resp.12287.
pmid: 24690015 |
[16] | Ishikawa S, Yano S, Kadowaki T, et al. Clinical analysis of non-tuberculous mycobacteriosis cases complicated with pulmonary aspergillosis. Kekkaku, 2011, 86(9):781-785. |
[17] |
Kunst H, Wickremasinghe M, Wells A, et al. Nontuberculous mycobacterial disease and Aspergillus-related lung disease in bronchiectasis. Eur Respir J, 2006, 28(2): 352-357. doi:10.1183/09031936.06.00139005.
pmid: 16611651 |
[18] | Fayos M, Silva JT, López-Medrano F, et al. Non-Tuberculous Mycobacteria and Aspergillus Lung Co-Infection: Systematic Review. J Clin Med, 2022, 11(19): 5619. doi:10.3390/jcm11195619. |
[19] |
Furuuchi K, Ito A, Hashimoto T, et al. Risk stratification for the development of chronic pulmonary aspergillosis in patients with Mycobacterium avium complex lung disease. J Infect Chemother, 2018, 24(8): 654-659. doi:10.1016/j.jiac.2018.04.002.
pmid: 29705392 |
[20] | Jhun BW, Jung WJ, Hwang NY, et al. Risk factors for the development of chronic pulmonary aspergillosis in patients with nontuberculous mycobacterial lung disease. PLoS One, 2017, 12(11): e0188716. doi:10.1371/journal.pone.0188716. |
[21] | Urabe N, Sakamoto S, Shimanuki Y, et al. Impact of chronic co-infection in pulmonary Mycobacterium avium complex disease after treatment initiation. BMC Pulm Med, 2022, 22(1): 157. doi:10.1186/s12890-022-01947-7. |
[22] | Hsieh MH, Lin CY, Wang CY, et al. Impact of concomitant nontuberculous mycobacteria and Pseudomonas aeruginosa isolates in non-cystic fibrosis bronchiectasis. Infect Drug Resist, 2018, 11:1137-1143. doi:10.2147/IDR.S169789. |
[23] |
Böllert FG, Sime PJ, MacNee W, et al. Pulmonary Mycobacterium malmoense and aspergillus infection: a fatal combination?. Thorax, 1994, 49(5):521-522. doi:10.1136/thx.49.5.521.
pmid: 8016779 |
[24] | Geurts K, Zweijpfenning SMH, Pennings LJ, et al. Nontuberculous mycobacterial pulmonary disease and Aspergillus co-infection: Bonnie and Clyde?. Eur Respir J, 2019, 54(1): 1900117. doi:10.1183/13993003.00117-2019. |
[25] | Zhu YN, Xie JQ, He XW, et al. Prevalence and Clinical Characteristics of Nontuberculous Mycobacteria in Patients with Bronchiectasis: A Systematic Review and Meta-Analysis. Respiration, 2021, 100(12): 1218-1229. doi:10.1159/000518328. |
[26] | Carazo-Fernández L, González-Cortés C, López-Medrano R, et al. Mycobacterium avium complex infected cells promote growth of the pathogen Pseudomonas aeruginosa. Microb Pathog, 2022, 166: 105549. doi:10.1016/j.micpath.2022.105549. |
[27] | Birmes FS, Wolf T, Kohl TA, et al. Mycobacterium abscessus subsp. abscessus Is Capable of Degrading Pseudomonas aeruginosa Quinolone Signals. Front Microbiol, 2017, 8: 339. doi:10.3389/fmicb.2017.00339. |
[28] | Déziel E, Gopalan S, Tampakaki AP, et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol, 2005, 55(4): 998-1014. doi:10.1111/j.1365-2958.2004.04448.x. |
[29] | Heeb S, Fletcher MP, Chhabra SR, et al. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev, 2011, 35(2): 247-274. doi:10.1111/j.1574-6976.2010.00247.x. |
[30] |
Smalley NE, An D, Parsek MR, et al. Quorum Sensing Protects Pseudomonas aeruginosa against Cheating by Other Species in a Laboratory Coculture Model. J Bacteriol, 2015, 197(19): 3154-3159. doi:10.1128/JB.00482-15.
pmid: 26195596 |
[31] | Costello A, Reen FJ, O’Gara F, et al. Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. Microbiology (Reading), 2014, 160(Pt 7):1474-1487. doi:10.1099/mic.0.074203-0. |
[32] |
Lee Y, Kim YJ, Lee JH, et al. TatC-dependent translocation of pyoverdine is responsible for the microbial growth suppression. J Microbiol, 2016, 54(2): 122-130. doi:10.1007/s12275-016-5542-9.
pmid: 26832668 |
[33] | Bryant JM, Brown KP, Burbaud S, et al. Stepwise pathogenic evolution of Mycobacterium abscessus. Science, 2021, 372(6541): eabb8699. doi:10.1126/science.abb8699. |
[34] |
Rodríguez-Sevilla G, García-Coca M, Romera-García D, et al. Non-Tuberculous Mycobacteria multispecies biofilms in cystic fibrosis: development of an in vitro Mycobacterium abscessus and Pseudomonas aeruginosa dual species biofilm model. Int J Med Microbiol, 2018, 308(3): 413-423. doi:10.1016/j.ijmm.2018.03.003.
pmid: 29555180 |
[35] | Idosa AW, Wozniak DJ, Hall-Stoodley L. Surface Dependent Inhibition of Mycobacterium abscessus by Diverse Pseudomonas aeruginosa Strains. Microbiol Spectr, 2022, 10(6): e0247122. doi:10.1128/spectrum.02471-22. |
[36] | Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56(1): 2000535. doi:10.1183/13993003.00535-2020. |
[37] |
Zhang J, Leifer F, Rose S, et al. Amikacin Liposome Inhalation Suspension (ALIS) Penetrates Non-tuberculous Mycobacterial Biofilms and Enhances Amikacin Uptake Into Macrophages. Front Microbiol, 2018, 9: 915. doi:10.3389/fmicb.2018.00915.
pmid: 29867826 |
[38] | Olivier KN, Griffith DE, Eagle G, et al. Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease. Am J Respir Crit Care Med, 2017, 195(6): 814-823. doi:10.1164/rccm.201604-0700OC. |
[39] | Griffith DE, Eagle G, Thomson R, et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am J Respir Crit Care Med, 2018, 198(12): 1559-1569. doi:10.1164/rccm.201807-1318OC. |
[40] | 中国医药教育协会感染疾病专业委员会. 抗菌药物药代动力学/药效学理论临床应用专家共识. 中华结核和呼吸杂志, 2018, 41(6): 409-446. doi:10.3760/cma.j.issn.1001-0939.2018.06.004. |
[41] | He S, Guo Q, Zhao L, et al. Sitafloxacin Expresses Potent Anti-Mycobacterium abscessus Activity. Front Microbiol, 2022, 12: 779531. doi:10.3389/fmicb.2021.779531. |
[42] | 中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版). 中华结核和呼吸杂志, 2022, 45(8): 739-752. doi:10.3760/cma.j.cn112147-20220407-00290. |
[43] | Takano K, Shimada D, Kashiwagura S, et al. Severe Pulmonary Mycobacterium abscessus Cases Due to Co-Infection with Other Microorganisms Well Treated by Clarithromycin and Sitafloxacin in Japan. Int Med Case Rep J, 2021, 14: 465-470. doi:10.2147/IMCRJ.S321969. |
[44] | Sano C, Tatano Y, Shimizu T, et al. Comparative in vitro and in vivo antimicrobial activities of sitafloxacin, gatifloxacin and moxifloxacin against Mycobacterium avium. Int J Antimicrob Agents, 2011, 37(4): 296-301. doi:10.1016/j.ijantimicag.2010.12.014. |
[45] | Drayton J, Dickinson G, Rinaldi MG. Coadministration of rifampin and itraconazole leads to undetectable levels of serum itraconazole. Clin Infect Dis, 1994, 18(2): 266. doi:10.1093/clinids/18.2.266. |
[46] |
Moon SM, Park HY, Jeong BH, et al. Effect of rifampin and rifabutin on serum itraconazole levels in patients with chronic pulmonary aspergillosis and coexisting nontuberculous mycobacterial infection. Antimicrob Agents Chemother, 2015, 59(1): 663-665. doi:10.1128/AAC.04075-14.
pmid: 25313207 |
[1] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[2] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[3] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[4] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[5] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
[6] | 舒薇, 刘宇红. 矢志革新 履践致远:《2024年全球结核病报告》结核病科学研究章节解读[J]. 中国防痨杂志, 2025, 47(2): 137-141. |
[7] | 张超, 于霞, 黄海荣, 刘伟, 刘涛. 七氟烷对结核分枝杆菌体外抑菌效果的评价[J]. 中国防痨杂志, 2025, 47(2): 158-163. |
[8] | 闫晓婧, 王宇津, 王隽, 荆玮, 李雪莲, 程洁, 杨国立, 王玉清, 初乃惠, 聂文娟, 矫晓克. 纳米孔测序技术对涂阴肺结核患者诊断价值的多中心临床研究[J]. 中国防痨杂志, 2025, 47(2): 169-174. |
[9] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[10] | 邱勇, 权卓, 屈榕, 田发君, 李蒙, 王更生, 王娅, 郭明成, 高谦. 县级实验室结核病检测方法的诊断效果分析: 一项基于真实世界数据的回顾性研究[J]. 中国防痨杂志, 2025, 47(2): 181-188. |
[11] | 徐良润, 杨明莹, 郭映武, 王赟, 徐晶晶, 侯菊艳, 马云红. 健康信念模式下家属协同护理模式在初治涂阳肺结核患者自我管理中的应用效果[J]. 中国防痨杂志, 2025, 47(2): 210-217. |
[12] | 柳晓蕾, 王海慧, 张汝姣, 崔蓉, 王凯, 田高清. 非结核分枝杆菌肺病并发肺曲霉菌病一例[J]. 中国防痨杂志, 2025, 47(1): 116-120. |
[13] | 张丽帆, 陈艳, 张月秋, 张奉春, 曾小峰, 赵岩, 刘升云, 左晓霞, 张志毅, 吴华香, 陈盛, 李鸿斌, 朱平, 武丽君, 齐文成, 刘毅, 张缪佳, 刘花香, 周宝桐, 侍效春, 阮桂仁, 刘晓清, 中国风湿免疫病人群活动性结核病的流行病学调查和治疗效果及预后研究课题组. 中国风湿免疫病患者活动性结核病患病情况多中心横断面研究:亚组分析[J]. 中国防痨杂志, 2025, 47(1): 22-28. |
[14] | 梁麟龙, 裴异, 周海依, 谢齐放, 张锋, 江杰, 刘富强. 2014—2023年湖南省0~14岁儿童肺结核流行特征及变化趋势[J]. 中国防痨杂志, 2025, 47(1): 29-35. |
[15] | 李雪秋, 刘群, 唐科, 吴迪. 2011—2020年广州市肺结核死亡趋势及年龄-时期-队列模型分析[J]. 中国防痨杂志, 2025, 47(1): 44-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||