[1] |
Xu G, Liu H, Jia X, et al. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis (Edinb), 2021, 128: 102083. doi:10.1016/j.tube.2021.102083.
|
[2] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[3] |
Schito M, Migliori GB, Fletcher HA, et al. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. Clin Infect Dis, 2015, 61Suppl 3(Suppl 3): S102-S118. doi:10.1093/cid/civ609.
|
[4] |
Sheikh BA, Bhat BA, Ahmad Z, et al. Strategies Employed to Evade the Host Immune Response and the Mechanism of Drug Resistance in Mycobacterium tuberculosis: In Search of Finding New Targets. Curr Pharm Biotechnol, 2022, 23(14): 1704-1720. doi:10.2174/1389201023666211222164938.
|
[5] |
Jumat MI, Sarmiento ME, Acosta A, et al. Role of non-coding RNAs in tuberculosis and their potential for clinical applications. J Appl Microbiol, 2023, 134(6): lxad104. doi:10.1093/jambio/lxad104.
|
[6] |
Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl), 2017, 95(11):1179-1189. doi:10.1007/s00109-017-1582-9.
pmid: 28842720
|
[7] |
Min J, Li Y, Li X, et al. The circRNA circVAMP3 restricts influenza A virus replication by interfering with NP and NS1 proteins. PLoS Pathog, 2023, 19(8): e1011577. doi:10.1371/journal.ppat.1011577.
|
[8] |
Hemati Z, Neamati F, Khaledi M, et al. Circular RNAs and tuberculosis infection. Int J Biol Macromol, 2023, 226: 1218-1225. doi:10.1016/j.ijbiomac.2022.11.235.
|
[9] |
Li Z, Gao Y, Zhang B, et al. circRNA_SLC8A1 promotes the survival of Mycobacterium tuberculosis in macrophages by upregulating expression of autophagy-related protein SQSTM1/p62 to activate the NF-kappaB pathway. Sci Rep, 2024, 14(1): 5233. doi:10.1038/s41598-024-55493-9.
|
[10] |
Pu X, Sheng S, Fu Y, et al. Construction of circRNA-miRNA-mRNA ceRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann Med, 2024, 56(1): 2416604. doi:10.1080/07853890.2024.2416604.
|
[11] |
Wang L, Meng C, Long Y, et al. The hsa_circ_0082152 maintains NF-κB mRNA stability by binding to MTDH to promote anti-tuberculosis drug-induced liver injury. Int J Biol Macromol, 2024, 269(Pt 1): 131793. doi:10.1016/j.ijbiomac.2024.131793.
|
[12] |
Zhang J, He Y, Ruan Q, et al. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L 1 axis modulates the survival of intracellular Mycobacterium tuberculosis and autophagy in macrophages. Cell Signal, 2024, 121: 111271. doi:10.1016/j.cellsig.2024.111271.
|
[13] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 结核与肺部疾病杂志, 2024, 5 (4): 376-378. doi:10.19983/j.issn.2096-8493.2024022.
|
[14] |
da Silva EH, Lima E, Dos Santos TR, et al. Prevalence and incidence of tuberculosis in health workers: A systematic review of the literature. Am J Infect Control, 2022, 50(7): 820-827. doi:10.1016/j.ajic.2022.01.021.
pmid: 35108578
|
[15] |
Shi L, Gu R, Long J, et al. Application of CRISPR-cas-based technology for the identification of tuberculosis, drug discovery and vaccine development. Mol Biol Rep, 2024, 51(1): 466. doi:10.1007/s11033-024-09424-6.
pmid: 38551745
|
[16] |
Wang Q, Yang D, Zuo Y, et al. Emerging roles of circular RNAs in tuberculosis. Front Immunol, 2022, 13: 995701. doi:10.3389/fimmu.2022.995701.
|
[17] |
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine, 2018, 34: 267-274. doi:10.1016/j.ebiom.2018.07.036.
pmid: 30078734
|
[18] |
Ding S, Yi X, Gao J, et al. Combining bioinformatics and machine learning to identify diagnostic biomarkers of TB associated with immune cell infiltration. Tuberculosis (Edinb), 2024, 149: 102570. doi:10.1016/j.tube.2024.102570.
|
[19] |
Long NP, Phat NK, Yen NTH, et al. A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction. Tuberculosis (Edinb), 2021, 131: 102138. doi:10.1016/j.tube.2021.102138.
|
[20] |
Zhong Q, Jin S, Zhang Z, et al. Identification and verification of circRNA biomarkers for coronary artery disease based on WGCNA and the LASSO algorithm. BMC Cardiovasc Disord, 2024, 24(1): 305. doi:10.1186/s12872-024-03972-2.
|
[21] |
Deng ZM, Dai FF, Zhou Q, et al. Hsa_circ_0000301 facilitates the progression of cervical cancer by targeting miR-1228-3p/IRF4 Axis. BMC Cancer, 2021, 21(1): 583. doi:10.1186/s12885-021-08331-4.
|
[22] |
Wang Z, Liu J, Wang Y, et al. Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning. Int J Mol Sci, 2023, 24(3): 3033. doi:10.3390/ijms24033033.
|
[23] |
Hunter L, Hingley-Wilson S, Stewart GR, et al. Dynamics of Macrophage, T and B Cell Infiltration Within Pulmonary Granulomas Induced by Mycobacterium tuberculosis in Two Non-Human Primate Models of Aerosol Infection. Front Immunol, 2022, 12: 776913. doi:10.3389/fimmu.2021.776913.
|
[24] |
Flores-Gonzalez J, Ramón-Luing LA, Falfán-Valencia R, et al. The presence of cytotoxic CD4 and exhausted-like CD8+ T-cells is a signature of active tuberculosis. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(6): 167219. doi:10.1016/j.bbadis.2024.167219.
|
[25] |
Winchell CG, Nyquist SK, Chao MC, et al. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. J Exp Med, 2023, 220(12): e20230707. doi:10.1084/jem.20230707.
|
[26] |
Kumar NP, Sridhar R, Hanna LE, et al. Decreased frequencies of circulating CD4+ T follicular helper cells associated with diminished plasma IL-21 in active pulmonary tuberculosis. PLoS One, 2014, 9(10): e111098. doi:10.1371/journal.pone.0111098.
|
[27] |
Bromley JD, Ganchua SKC, Nyquist SK, et al. CD4+ T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity, 2025, 58(2): 513-514. doi:10.1016/j.immuni.2025.01.001.
|
[28] |
Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777. doi:10.1371/journal.pgen.1003777.
|
[29] |
Li X, Zhang B, Li F, et al. The mechanism and detection of alternative splicing events in circular RNAs. PeerJ, 2020, 8: e10032. doi:10.7717/peerj.10032.
|
[30] |
Albanna AS, Bachmann K, White D, et al. Serum lipids as biomarkers for therapeutic monitoring of latent tuberculosis infection. Eur Respir J, 2013, 42(2): 547-550. doi:10.1183/09031936.00064713.
pmid: 23904552
|
[31] |
Liu J, Li Y, Wei L, et al. Screening and identification of potential biomarkers and establishment of the diagnostic serum proteomic model for the Traditional Chinese Medicine Syndromes of tuberculosis. J Ethnopharmacol, 2014, 155(2): 1322-1331. doi:10.1016/j.jep.2014.07.025.
pmid: 25072359
|
[32] |
Wang C, Li YY, Li X, et al. Serum complement C4b, fibronectin, and prolidase are associated with the pathological changes of pulmonary tuberculosis. BMC Infect Dis, 2014, 14: 52. doi:10.1186/1471-2334-14-52.
pmid: 24484408
|
[33] |
Xu DD, Deng DF, Li X, et al. Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, 2014, 14(2/3): 322-331. doi:10.1002/pmic.201300383.
|
[34] |
Wang C, Wei LL, Shi LY, et al. Screening and identification of five serum proteins as novel potential biomarkers for cured pulmonary tuberculosis. Sci Rep, 2015, 5:15615. doi:10.1038/srep15615.
pmid: 26499913
|
[35] |
Chiang CY, Bai KJ, Lin HH, et al. The influence of diabetes, glycemic control, and diabetes-related comorbidities on pulmonary tuberculosis. PLoS One, 2015, 10(3): e0121698. doi:10.1371/journal.pone.0121698.
|
[36] |
Critchley JA, Carey IM, Harris T, et al. Glycemic Control and Risk of Infections Among People With Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care, 2018, 41(10): 2127-2135. doi:10.2337/dc18-0287.
pmid: 30104296
|
[37] |
Driscoll DM, Zhang Q. Expression and characterization of p27, the catalytic subunit of the apolipoprotein B mRNA editing enzyme. J Biol Chem, 1994, 269(31):19843-19847.
pmid: 8051066
|
[38] |
Ma J, Zhao F, Su W, et al. Zinc finger and interferon-stimulated genes play a vital role in TB-IRIS following HAART in AIDS. Per Med, 2018, 15(4): 251-269. doi:10.2217/pme-2017-0084.
pmid: 29984631
|
[39] |
Liu H, Han Z, Chen L, et al. ZNFX1 promotes AMPK-mediated autophagy against Mycobacterium tuberculosis by stabilizing Prkaa2 mRNA. JCI Insight, 2024, 9(1): e171850. doi:10.1172/jci.insight.171850.
|