[1] |
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[2] |
Russell DG, Barry CE 3rd, Flynn JL. Tuberculosis: what we don’t know can, and does, hurt us. Science, 2010, 328(5980):852-856. doi:10.1126/science.1184784.
pmid: 20466922
|
[3] |
Muñoz-Elías EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med, 2005, 11(6):638-644. doi:10.1038/nm1252.
pmid: 15895072
|
[4] |
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008, 105(11):4376-4380. doi:10.1073/pnas.0711159105.
|
[5] |
Yang X, Nesbitt NM, Dubnau E, et al. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry, 2009, 48(18):3819-3821. doi:10.1021/bi9005418.
|
[6] |
Martens GW, Arikan MC, Lee J, et al. Hypercholesterolemia impairs immunity to tuberculosis. Infect Immun, 2008, 76(8): 3464-3472. doi:10.1128/iai.00037-08.
pmid: 18505807
|
[7] |
Kim MJ, Wainwright HC, Locketz M, et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med, 2010, 2(7):258-274. doi:10.1002/emmm.201000079.
|
[8] |
Schäfer G, Guler R, Murray G, et al. The role of scavenger receptor B 1 in infection with Mycobacterium tuberculosis in a murine model. PLoS One, 2009, 4(12): e8448. doi:10.1371/journal.pone.0008448.
|
[9] |
Khan S, Islam A, Hassan MI, et al. Purification and structural characterization of Mce4A from Mycobacterium tuberculosis. Int J Biol Macromol, 2016, 93(Pt A): 235-241. doi:10.1016/j.ijbiomac.2016.06.059.
|
[10] |
Bashiri G. Lipid transport across the mycobacterial cell envelope. IUCr J, 2021, 8(Pt 5): 711-712. doi:10.1107/S2052252521008885.
|
[11] |
Rathor N, Garima K, Sharma NK, et al. Expression profile of mce 4 operon of Mycobacterium tuberculosis following environmental stress. Int J Mycobacteriol, 2016, 5(3): 328-332. doi:10.1016/j.ijmyco.2016.08.004.
pmid: 27847019
|
[12] |
张宗德, 李自慧, 杜博平, 等. 结核杆菌体内诱导基因的筛选及初步分析. 中华医学杂志, 2008, 88(3): 189-193. doi:10.3321/j.issn:0376-2491.2008.03.013.
|
[13] |
Chandra P, Coullon H, Agarwal M, et al. Macrophage global metabolomics identifies cholestenone as host/pathogen cometabolite present in human Mycobacterium tuberculosis infection. J Clin Invest, 2022, 132(3):e152509. doi:10.1172/JCI152509.
|
[14] |
Freeman NE, Rusinol AE, Linton M, et al. Acyl-coenzyme A:cholesterol acyltransferase promotes oxidized LDL/oxysterol-induced apoptosis in macrophages. J Lipid Res, 2005, 46(9):1933-1943. doi:10.1194/jlr.M500101-JLR200.
pmid: 15995174
|
[15] |
Roca FJ, Whitworth LJ, Prag HA, et al. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science, 2022, 376(6600):eabh2841. doi:10.1126/science.abh2841.
|
[16] |
Zhu Y, Choi D, Somanath PR, et al. Lipid-Laden Macrophages in Pulmonary Diseases. Cells, 2024, 13(11):889. doi:10.3390/cells13110889.
|
[17] |
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev, 2020, 33(3):e00159-19. doi:10.1128/cmr.00159-19.
|
[18] |
Rank L, Herring LE, Braunstein M. Evidence for the Mycobacterial Mce4 Transporter Being a Multiprotein Complex. J Bacteriol, 2021, 203(10):e00685-20. doi:10.1128/jb.00685-20.
|
[19] |
Perkowski EF, Miller BK, McCann JR, et al. An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters. Mol Microbiol, 2016, 100(1): 90-107. doi:10.1111/mmi.13303.
pmid: 26712165
|
[20] |
Klepp LI, Sabio Y, Garcia J, et al. Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall. Tuberculosis (Edinb), 2022, 132: 102162. doi:10.1016/j.tube.2021.102162.
|
[21] |
Fieweger RA, Wilburn KM, Montague CR, et al. MceG stabilizes the Mce1 and Mce4 transporters in Mycobacterium tuberculosis. J Biol Chem, 2023, 299(3): 102910. doi:10.1016/j.jbc.2023.102910.
|
[22] |
Asthana P, Singh D, Pedersen JS, et al. Structural insights into the substrate-binding proteins Mce1A and Mce4A from Mycobacterium tuberculosis. IUCr J, 2021, 8(Pt 5): 757-774. doi:10.1107/s2052252521006199.
|
[23] |
Chen Z, Kong X, Ma Q, et al. The impact of Mycobacterium tuberculosis on the macrophage cholesterol metabolism pathway. Front Immunol, 2024, 15: 1402024. doi:10.3389/fimmu.2024.1402024.
|
[24] |
Pawełczyk J, Brzostek A, Minias A, et al. Cholesterol-dependent transcriptome remodeling reveals new insight into the contribution of cholesterol to Mycobacterium tuberculosis pathogenesis. Sci Rep, 2021, 11(1): 12396. doi:10.1038/s41598-021-91812-0.
pmid: 34117327
|
[25] |
Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis, 2018, 76(2):fty021. doi:10.1093/femspd/fty021.
|
[26] |
Kumar A, Bose M, Brahmachari V. Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun, 2003, 71(10): 6083-6087. doi:10.1128/iai.71.10.6083-6087.2003.
|
[27] |
Mohn WW, van der Geize R, Stewart GR, et al. The actinobacterial mce 4 locus encodes a steroid transporter. J Biol Chem, 2008, 283(51): 35368-35374. doi:10.1074/jbc.M805496200.
|
[28] |
García-Fernández J, Papavinasasundaram K, Galán B, et al. Molecular and functional analysis of the mce 4 operon in Mycobacterium smegmatis. Environ Microbiol, 2017, 19(9):3689-3699. doi:10.1111/1462-2920.13869.
pmid: 28752922
|
[29] |
Nazarova EV, Montague CR, La T, et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. Elife, 2017, 6:e26969. doi:10.7554/eLife.26969.
|
[30] |
Ramón-García S, Stewart GR, Hui ZK, et al. The mycobacterial P 55 efflux pump is required for optimal growth on cholesterol. Virulence, 2015, 6(5):444-448. doi:10.1080/21505594.2015.1044195.
pmid: 26155739
|