中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (4): 513-519.doi: 10.19982/j.issn.1000-6621.20240445
宋云林1, 布祖克拉·阿布都艾尼1, 王桂荣2, 张继园3, 鲁晓擘4()
收稿日期:
2024-10-08
出版日期:
2025-04-10
发布日期:
2025-04-02
通信作者:
鲁晓擘,Email:基金资助:
Song Yunlin1, Buzukela Abuduaini1, Wang Guirong2, Zhang Jiyuan3, Lu Xiaobo4()
Received:
2024-10-08
Online:
2025-04-10
Published:
2025-04-02
Contact:
Lu Xiaobo, Email: Supported by:
摘要:
重症肺结核患者的发病率和死亡率居高不下,然而,由于重症肺结核在早期阶段的临床症状和体征缺乏特异性,诊断面临巨大挑战。此外,重症肺结核的治疗也因药物相互作用、药物与疾病相互作用及药物不良反应等多重因素的影响变得更加复杂,这些因素对结核病的预防和控制带来了新的挑战。重症肺结核的发病机制涉及到宿主与结核分枝杆菌间复杂的交互作用,发病机制仍不完全清楚。有研究报道,钙结合蛋白S100A12(简称“S100A12”)与中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)在重症肺结核的病理生理过程中扮演着至关重要的角色,S100A12驱动NETs形成,是NETs生理病理效应相关的关键蛋白。S100A12通过调控免疫细胞与炎症因子的释放及其相互作用,参与重症肺结核患者肺功能损伤机制,然而,当前针对S100A12与NETs在重症肺结核调控中的机制尚未完全阐明。鉴于此,笔者旨在综述S100A12与NETs在重症肺结核患者中的相关研究进展及其潜在的分子机制,以期为重症肺结核治疗策略的探索提供新的科学依据和创新性思路。
中图分类号:
宋云林, 布祖克拉·阿布都艾尼, 王桂荣, 张继园, 鲁晓擘. 钙结合蛋白S100A12与中性粒细胞胞外诱捕网形成在重症肺结核患者肺损伤中作用机制研究进展[J]. 中国防痨杂志, 2025, 47(4): 513-519. doi: 10.19982/j.issn.1000-6621.20240445
Song Yunlin, Buzukela Abuduaini, Wang Guirong, Zhang Jiyuan, Lu Xiaobo. Research progresses on the role and mechanism of calcium-binding protein S100A12 and neutrophil extracellular trap formation in lung injury of severe pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2025, 47(4): 513-519. doi: 10.19982/j.issn.1000-6621.20240445
[1] | Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev, 2013, 24(2): 105-113. doi:10.1016/j.cytogfr.2012.10.002. |
[2] |
Amaral EP, Lasunskaia EB, D’Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect, 2016, 18(1): 11-20. doi:10.1016/j.micinf.2015.09.005.
pmid: 26369715 |
[3] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024, 10(1): 22. doi:10.1038/s41572-024-00504-2.
pmid: 38523140 |
[4] | Dias NJD, Silva MSD, Barbosa MS, et al. Severe acute respi-ratory syndrome coronavirus 2 seroprevalence among patients with pulmonary tuberculosis. Rev Assoc Med Bras (1992), 2023, 69(9): e20230661. doi:10.1590/1806-9282.20230661. |
[5] | Marusinec R, Clifton T, Chitnis AS, et al. Advanced pulmonary tuberculosis in Alameda County: Ten-year incidence and risk factors. J Clin Tuberc Other Mycobact Dis, 2024, 37: 100475. doi:10.1016/j.jctube.2024.100475. |
[6] |
Muthu V, Agarwal R, Dhooria S, et al. Outcome of Critically Ill Subjects With Tuberculosis: Systematic Review and Meta-Analysis. Respir Care, 2018, 63(12): 1541-1554. doi:10.4187/respcare.06190.
pmid: 30206126 |
[7] | Hagan G, Nathani N. Clinical review: tuberculosis on the intensive care unit. Crit Care, 2013, 17(5): 240. doi:10.1186/cc12760. |
[8] | 吴绣岑, 陈贵华. 2023年美国预防医学服务工作组《成人结核分枝杆菌潜伏感染筛查》解读. 结核与肺部疾病杂志, 2024, 5 (5): 398-403. doi:10.19983/j.issn.2096-8493.2024105. |
[9] | Tan DTM, See KC. Diagnosis and management of severe pulmonary and extrapulmonary tuberculosis in critically ill patients: A mini review for clinicians. World J Crit Care Med, 2024, 13(2): 91435. doi:10.5492/wjccm.v13.i2.91435. |
[10] | Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4): 10.1128/microbiolspec.gpp3-0022-2018. doi:10.1128/microbiolspec.GPP3-0022-2018. |
[11] |
Stutz MD, Allison CC, Ojaimi S, et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 2021, 54(8): 1758-1771.e7. doi:10.1016/j.immuni.2021.06.009.
pmid: 34256013 |
[12] | Eum SY, Kong JH, Hong MS, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010, 137(1): 122-128. doi:10.1378/chest.09-0903. |
[13] | Sugawara I, Udagawa T, Yamada H. Rat neutrophils prevent the development of tuberculosis. Infect Immun, 2004, 72(3): 1804-1806. doi:10.1128/IAI.72.3.1804-1806.2004. |
[14] |
Gatti A, Ceriani C, De Paschale M, et al. Quantification of neutrophil and monocyte CD 64 expression: a predictive biomarker for active tuberculosis. Int J Tuberc Lung Dis, 2020, 24(2): 196-201. doi:10.5588/ijtld.19.0147.
pmid: 32127104 |
[15] |
Miyahara R, Piyaworawong S, Naranbhai V, et al. Predicting the risk of pulmonary tuberculosis based on the neutrophil-to-lymphocyte ratio at TB screening in HIV-infected individuals. BMC Infect Dis, 2019, 19(1): 667. doi:10.1186/s12879-019-4292-9.
pmid: 31357936 |
[16] | Scott NR, Swanson RV, Al-Hammadi N, et al. S100A8/A 9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest, 2020, 130(6): 3098-3112. doi:10.1172/JCI130546. |
[17] |
Lowe DM, Bandara AK, Packe GE, et al. Neutrophilia independently predicts death in tuberculosis. Eur Respir J, 2013, 42(6): 1752-1757. doi:10.1183/09031936.00140913.
pmid: 24114967 |
[18] |
Abakay O, Abakay A, Sen HS, et al. The relationship between inflammatory marker levels and pulmonary tuberculosis severity. Inflammation, 2015, 38(2): 691-696. doi:10.1007/s10753-014-9978-y.
pmid: 25028104 |
[19] |
Yin Y, Kuai S, Liu J, et al. Pretreatment neutrophil-to-lymphocyte ratio in peripheral blood was associated with pulmonary tuberculosis retreatment. Arch Med Sci, 2017, 13(2): 404-411. doi:10.5114/aoms.2016.60822.
pmid: 28261295 |
[20] | Panteleev AV, Nikitina IY, Burmistrova IA, et al. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD 4 T-Cell Response. Front Immunol, 2017, 8: 963. doi:10.3389/fimmu.2017.00963. |
[21] |
Seiler P, Aichele P, Bandermann S, et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol, 2003, 33(10): 2676-2686. doi:10.1002/eji.200323956.
pmid: 14515251 |
[22] |
Tan BH, Meinken C, Bastian M, et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol, 2006, 177(3): 1864-1871. doi:10.4049/jimmunol.177.3.1864.
pmid: 16849498 |
[23] | Eruslanov EB, Lyadova IV, Kondratieva TK, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun, 2005, 73(3): 1744-1753. doi:10.1128/IAI.73.3.1744-1753.2005. |
[24] | Yeremeev V, Linge I, Kondratieva T, et al. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb), 2015, 95(4): 447-451. doi:10.1016/j.tube.2015.03.007. |
[25] | Ashenafi S, Loreti MG, Bekele A, et al. Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Front Immunol, 2023, 14: 1296501. doi:10.3389/fimmu.2023.1296501. |
[26] | Masood KI, Rottenberg ME, Carow B, et al. SOCS1 gene expression is increased in severe pulmonary tuberculosis. Scand J Immunol, 2012, 76(4): 398-404. doi:10.1111/j.1365-3083.2012.02731.x. |
[27] | Vincent FB, Saulep-Easton D, Figgett WA, et al. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev, 2013, 24(3): 203-215. doi:10.1016/j.cytogfr.2013.04.003. |
[28] |
Sakai J, Akkoyunlu M. The Role of BAFF System Molecules in Host Response to Pathogens. Clin Microbiol Rev, 2017, 30(4): 991-1014. doi:10.1128/CMR.00046-17.
pmid: 28855265 |
[29] | Parsa R, Lund H, Georgoudaki AM, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med, 2016, 213(8): 1537-1553. doi:10.1084/jem.20150577. |
[30] | García-Bengoa M, Meurer M, Stehr M, et al. Mycobacterium tuberculosis PE/PPE proteins enhance the production of reactive oxygen species and formation of neutrophil extracellular traps. Front Immunol, 2023, 14: 1206529. doi:10.3389/fimmu.2023.1206529. |
[31] | de Buhr N, von Köckritz-Blickwede M. How Neutrophil Extracellular Traps Become Visible. J Immunol Res, 2016, 2016: 4604713. doi:10.1155/2016/4604713. |
[32] |
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol, 2012, 198(5): 773-783. doi:10.1083/jcb.201203170.
pmid: 22945932 |
[33] |
Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science, 2017, 358(6367):1202-1206. doi:10.1126/science.aam8897.
pmid: 29191910 |
[34] | 吴守媛, 兰慧, 刘云兰, 等. 重症肺结核定义的概况性评价. 中华结核和呼吸杂志, 2023, 46(8): 760-773. doi:10.3760/cma.j.cn112147-20230517-00247. |
[35] | Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009, 5(10): e1000639. doi:10.1371/journal.ppat.1000639. |
[36] | Keller D, Mester P, Räth U, et al. Calprotectin, a Promising Serological Biomarker for the Early Diagnosis of Superinfections with Multidrug-Resistant Bacteria in Patients with COVID-19. Int J Mol Sci, 2024, 25(17): 9294. doi:10.3390/ijms25179294. |
[37] |
Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat Commun, 2020, 11(1): 5566. doi:10.1038/s41467-020-19412-6.
pmid: 33149141 |
[38] |
Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014, 15(11): 1017-1025. doi:10.1038/ni.2987.
pmid: 25217981 |
[39] | van der Meer AJ, Zeerleder S, Blok DC, et al. Neutrophil extracellular traps in patients with pulmonary tuberculosis. Respir Res, 2017, 18(1): 181. doi:10.1186/s12931-017-0663-1. |
[40] |
Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages. J Innate Immun, 2013, 5(6): 591-602. doi:10.1159/000348676.
pmid: 23635526 |
[41] | Cavalcante-Silva LHA, Almeida FS, Andrade AG, et al. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci, 2023, 24(14): 11385. doi:10.3390/ijms241411385. |
[42] | Filio-Rodríguez G, Estrada-García I, Arce-Paredes P, et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun, 2017, 23(7): 625-637. doi:10.1177/1753425917732406. |
[43] | Gopal R, Monin L, Torres D, et al. S100A8/A 9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med, 2013, 188(9): 1137-1146. doi:10.1164/rccm.201304-0803OC. |
[44] | Schechter MC, Buac K, Adekambi T, et al. Neutrophil extracellular trap (NET) levels in human plasma are associated with active TB. PLoS One, 2017, 12(8): e0182587. doi:10.1371/journal.pone.0182587. |
[45] | Sattar Z, Lora A, Jundi B, et al. The S 100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med, 2021, 2021: 5488591. doi:10.1155/2021/5488591. |
[46] | Motomura K, Romero R, Plazyo O, et al. The alarmin S100A 12 causes sterile inflammation of the human chorioamniotic membranes as well as preterm birth and neonatal mortality in mice. Biol Reprod, 2021, 105(6): 1494-1509. doi:10.1093/biolre/ioab188. |
[47] | Carvalho A, Lu J, Francis JD, et al. S100A 12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol Res Pract, 2020, 2020: 2868373. doi:10.1155/2020/2868373. |
[48] |
Holzinger D, Foell D, Kessel C. The role of S100 proteins in the pathogenesis and monitoring of autoinflammatory diseases. Mol Cell Pediatr, 2018, 5(1): 7. doi:10.1186/s40348-018-0085-2.
pmid: 30255357 |
[49] | Jackson E, Little S, Franklin DS, et al. Expression, Purification, and Antimicrobial Activity of S100A12. J Vis Exp, 2017(123): 55557. doi:10.3791/55557. |
[50] | Kovacˇić M, Mitrović-Ajtić O, Beleslin-Cˇokić B, et al. TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Cell Oncol (Dordr), 2018, 41(5): 541-553. doi:10.1007/s13402-018-0392-6. |
[51] |
Zackular JP, Chazin WJ, Skaar EP. Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. J Biol Chem, 2015, 290(31): 18991-18998. doi:10.1074/jbc.R115.645085.
pmid: 26055713 |
[52] | Fernandez IZ, Baxter RM, Garcia-Perez JE, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med, 2019, 216(6): 1255-1267. doi:10.1084/jem.20182015. |
[53] |
Sorci G, Riuzzi F, Giambanco I, et al. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta, 2013, 1833(1): 101-109. doi:10.1016/j.bbamcr.2012.10.021.
pmid: 23103427 |
[54] |
Goyette J, Yan WX, Yamen E, et al. Pleiotropic roles of S100A 12 in coronary atherosclerotic plaque formation and rupture. J Immunol, 2009, 183(1): 593-603. doi:10.4049/jimmunol.0900373.
pmid: 19542470 |
[55] |
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol, 2022, 20(11): 657-670. doi:10.1038/s41579-022-00745-6.
pmid: 35641670 |
[56] |
Berrocal-Almanza LC, Goyal S, Hussain A, et al. S100A 12 is up-regulated in pulmonary tuberculosis and predicts the extent of alveolar infiltration on chest radiography: an observational study. Sci Rep, 2016, 6: 31798. doi:10.1038/srep31798.
pmid: 27539060 |
[57] |
Bagheri V. S100A12: Friend or foe in pulmonary tuberculosis?. Cytokine, 2017, 92: 80-82. doi:10.1016/j.cyto.2017.01.009.
pmid: 28110121 |
[58] | Realegeno S, Kelly-Scumpia KM, Dang AT, et al. S100A 12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathog, 2016, 12(6): e1005705. doi:10.1371/journal.ppat.1005705. |
[59] |
Kumar NP, Moideen K, Nancy A, et al. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis, 2019, 19(1): 1039. doi:10.1186/s12879-019-4648-1.
pmid: 31818258 |
[60] |
Wang Y, Sun Q, Zhang Y, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect, 2023, 86(5): 421-438. doi:10.1016/j.jinf.2023.03.020.
pmid: 37003521 |
[61] | Zuo Y, Leng G, Leng P. Identification and validation of molecular subtype and prognostic signature for lung adenocarcinoma based on neutrophil extracellular traps. Pathol Oncol Res, 2023, 29: 1610899. doi:10.3389/pore.2023.1610899. |
[62] | Zhang X, Zhang XL, Zhang Y, et al. Abstract 10505: S100a12 Aggravates Acute Myocardial Infarction Injury Through Excessive Neutrophil Extracellular Trap Formation. Circulation, 2021, 144(Supppl_1): A10505. doi:10.1161/circ.144.suppl 1.10505. |
[1] | 郑壮彬, 毕利军, 张立群. 结核分枝杆菌膜蛋白MmpS5/MmpL5与贝达喹啉的相互作用研究[J]. 中国防痨杂志, 2025, 47(7): 884-892. |
[2] | 李琦, 王宇津, 王雪钰, 初乃惠, 聂文娟. 新型化合物舒达吡啶与克拉霉素药物代谢相互作用机制研究[J]. 中国防痨杂志, 2025, 47(2): 142-149. |
[3] | 钭张琪, 杨华, 张彬娥, 张旭珍, 夏宜东, 金烈. 利妥昔单抗治疗抗肾小球基底膜肾炎合并抗中性粒细胞胞质抗体阳性及肺部感染1例并文献复习[J]. 中国防痨杂志, 2024, 46(S1): 17-20. |
[4] | 钭张琪, 杨华, 张彬娥, 张旭珍, 金烈. 基于生物信息学鉴定ANCA相关性血管炎与新型冠状病毒感染的关键表达基因及潜在治疗靶点[J]. 中国防痨杂志, 2024, 46(S1): 9-12. |
[5] | 庄丽, 马子风, 蒋雨薇, 黄星, 张惠勇, 鹿振辉, 吴显伟. 基于网络药理学的中药组方“芩部丹”治疗肺结核作用机制研究[J]. 中国防痨杂志, 2022, 44(3): 273-283. |
[6] | 刘媛, 陈洁, 孙辉, 刘幸, 刘梦醒, 李池川, 杨柏荣, 杨敏. 中药治疗肺结核的用药规律及其核心药物作用机制的探讨[J]. 中国防痨杂志, 2022, 44(2): 131-140. |
[7] | 谭守勇, 袁园, 邝浩斌, 龚芳, 汪敏. 中性粒细胞/淋巴细胞比值与2型糖尿病并发肺结核患者继发肺部感染相关性[J]. 中国防痨杂志, 2021, 43(6): 602-605. |
[8] | 刘婷, 王亮, 杨梅. 耐多药肺结核患者外周血中性粒细胞抗结核活性的初步研究[J]. 中国防痨杂志, 2021, 43(4): 352-356. |
[9] | 孙晴, 黄海荣, 王桂荣. 贝达喹啉、氯法齐明和德拉马尼对常见致病性非结核分枝杆菌体外抑菌活性及耐药机制的研究进展[J]. 中国防痨杂志, 2020, 42(8): 880-884. |
[10] | 宋艳华,高孟秋,李琦. 结核分枝杆菌对乙硫异烟胺/丙硫异烟胺耐药的机制及其增敏剂研究进展[J]. 中国防痨杂志, 2020, 42(2): 173-177. |
[11] | 刘原园, 初平, 韩书婧, 杨慧, 鲁洁. 结核分枝杆菌对德拉马尼的耐药机制研究进展[J]. 中国防痨杂志, 2020, 42(11): 1237-1242. |
[12] | 张叶,李媛媛,徐建,陈曦,王彬,付雷,陆宇. 吡法齐明抗耐药结核分枝杆菌作用机制的初步研究[J]. 中国防痨杂志, 2019, 41(11): 1160-1166. |
[13] | 凌彦博,梁艳,王小美,等. 中药复方牛贝消核提取物治疗结核病相关靶标的研究[J]. 中国防痨杂志, 2016, 38(1): 17-22. |
[14] | 刘前桂,赵双燕,李木,徐建华,田容,李金红,康丽君,孙丽,. 肺血管炎误诊为肺结核5例临床分析及误诊原因探讨[J]. 中国防痨杂志, 2007, 29(5): 432-434. |
[15] | 朱黎明,李春香,陈平,张业军,邓学辉,林丽,钟飞,龙伟. 肺结核患者中性粒细胞防御素1-3表达的临床研究[J]. 中国防痨杂志, 2007, 29(3): 238-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||