[1] |
Takiishi T, Fenero CIM, Cämara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 2017, 5(4): e1373208. doi:10.1080/21688370.2017.1373208.
|
[2] |
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021, 19(1): 55-71. doi:10.1038/s41579-020-0433-9.
|
[3] |
Ma PJ, Wang MM, Wang Y. Gut microbiota: A new insight into lung diseases. Biomed Pharmacother, 2022, 155(11): 113810. doi:10.1016/j.biopha.2022.113810.
|
[4] |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63. doi:10.1038/nrmicro.2016.142.
pmid: 27694885
|
[5] |
Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol, 2010,28:623-667. doi:10.1146/annurev-immunol-030409-101330.
|
[6] |
Lee Y, Seo H, Kim S, et al. Activity of Lactobacillus crispatus isolated from vaginal microbiota against Mycobacterium tuberculosis. J Microbiol, 2021, 59(11): 1019-1030. doi:10.1007/s12275-021-1332-0.
|
[7] |
Wang S, Yang L, Hu H, et al. Characteristic gut microbiota and metabolic changes in patients with pulmonary tuberculosis. Microb Biotechnol, 2022, 15(1): 262-275. doi:10.1111/1751-7915.13761.
pmid: 33599402
|
[8] |
Stojanov S, Berlec A, Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020, 8(11):1715. doi:10.3390/microorganisms8111715.
|
[9] |
Luo M, Liu Y, Wu P, et al. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Front Physiol, 2017, 8(11):822. doi:10.3389/fphys.2017.00822.
|
[10] |
Li W, Zhu Y, Liao Q, et al. Characterization of gut microbiota in children with pulmonary tuberculosis. BMC Pediatr, 2019, 19(1): 445. doi:10.1186/s12887-019-1782-2.
pmid: 31735171
|
[11] |
易一行, 喻容, 石国民, 等. 基于16S rRNA V4区高通量测序的初治菌阳肺结核患者肠道菌群构成与表型分析. 中国防痨杂志, 2021, 43 (9):939-946. doi:10.3969/j.issn.1000-6621.2021.09.014.
|
[12] |
Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 2017, 151(4): 363-374. doi:10.1111/imm.12760.
pmid: 28542929
|
[13] |
张晓萌, 李敏, 柴英辉, 等. 肠道菌群短链脂肪酸与肺结核相关性研究进展. 中国防痨杂志, 2023, 45(7):699-706. doi:10.19982/j.issn.1000-6621.20230079.
|
[14] |
Liu Y, Wang J, Wu C. Microbiota and Tuberculosis: A Potential Role of Probiotics, and Postbiotics. Front Nutr, 2021, 8:626254. doi:10.3389/fnut.2021.626254.
|
[15] |
Wu C, Yi H, Hu Y, et al. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front Cell Infect Microbiol, 2023, 13:1127916. doi:10.3389/fcimb.2023.1127916.
|
[16] |
Mu C, Zhu W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl Microbiol Biotechnol, 2019, 103(23/24): 9277-9285. doi:10.1007/s00253-019-10165-x.
|
[17] |
Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep, 2017, 7(1): 10767. doi:10.1038/s41598-017-10346-6.
pmid: 28883399
|
[18] |
Cao D, Liu W, Lyu N, et al. Gut Mycobiota Dysbiosis in Pulmonary Tuberculosis Patients Undergoing Anti-Tuberculosis Treatment. Microbiol Spectr, 2021, 9(3): e0061521. doi:10.1128/spectrum.00615-21.
|
[19] |
Wang J, Xiong K, Zhao S, et al. Long-Term Effects of Multi-Drug-Resistant Tuberculosis Treatment on Gut Microbiota and Its Health Consequences. Front Microbiol, 2020,11:53. doi:10.3389/fmicb.2020.00053.
|
[20] |
吴冬雪, 李玉红, 裴盛斐, 等. 基于16S rDNA测序技术分析异烟肼致大鼠肝损伤中肠道菌群变化特征. 安徽医科大学学报, 2021, 56(9):1374-1378. doi:10.19405/j.cnki.issn1000-1492.2021.09.006.
|
[21] |
Negi S, Pahari S, Bashir H, et al. Intestinal microbiota disruption limits the isoniazid mediated clearance of Mycobacterium tuberculosis in mice. Eur J Immunol, 2020, 50(12): 1976-1987. doi:10.1002/eji.202048556.
|
[22] |
Khan N, Vidyarthi A, Nadeem S, et al. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol, 2016, 7:529. doi:10.3389/fimmu.2016.00529.
pmid: 27965663
|
[23] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019, 12(3): 772-783. doi:10.1038/s41385-019-0147-3.
|
[24] |
Nadeem S, Maurya SK, Das DK, et al. Gut Dysbiosis Thwarts the Efficacy of Vaccine Against Mycobacterium tuberculosis. Front Immunol, 2020, 11:726. doi:10.3389/fimmu.2020.00726.
pmid: 32508806
|
[25] |
Chénard T, Prévost K, Dubé J, et al. Immune System Modulations by Products of the Gut Microbiota. Vaccines (Basel), 2020, 8(3):461. doi:10.3390/vaccines8030461.
|
[26] |
Chen Y, Zhou J, Wang L. Role and Mechanism of Gut Microbiota in Human Disease. Front Cell Infect Microbiol, 2021, 11:625913. doi:10.3389/fcimb.2021.625913.
|
[27] |
Lachmandas E, van den Heuvel CN, Damen MS, et al. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids. J Diabetes Res, 2016,2016:6014631. doi:10.1155/2016/6014631.
|
[28] |
Kaufmann SHE. Indole Propionic Acid: a Small Molecule Links between Gut Microbiota and Tuberculosis. Antimicrob Agents Chemother, 2018, 62(5):e00389-18. doi:10.1128/aac.00389-18.
|
[29] |
Segal LN, Clemente JC, Li Y, et al. Anaerobic Bacterial Fermentation Products Increase Tuberculosis Risk in Antiretroviral-Drug-Treated HIV Patients. Cell Host Microbe, 2017, 21(4): 530-537,e4. doi:10.1016/j.chom.2017.03.003.
pmid: 28366509
|
[30] |
Liu P, Wang Y, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res, 2021, 165:105420. doi:10.1016/j.phrs.2021.105420.
|
[31] |
González-Bosch C, Boorman E, Zunszain PA, et al. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol, 2021, 47:102165. doi:10.1016/j.redox.2021.102165.
|
[32] |
Zou F, Qiu Y, Huang Y, et al. Effects of short-chain fatty acids in inhibiting HDAC and activating p 38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis, 2021, 12(6): 582. doi:10.1038/s41419-021-03880-9.
|
[33] |
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol, 2023, 14:1118529. doi:10.3389/fmicb.2023.1118529.
|
[34] |
乃菲沙·买买提, 尚晓倩, 范佳惠, 等. TREM2通过调控巨噬细胞极化在肺结核病中的作用及分子机制研究. 中国病原生物学杂志, 2024, 19(4):405-410. doi:10.13350/j.cjpb.240406.
|
[35] |
Lun H, Li P, Li J, et al. The effect of intestinal flora metabolites on macrophage polarization. Heliyon, 2024, 10(15): e35755. doi:10.1016/j.heliyon.2024.e35755.
|
[36] |
费婉婉, 鹿振辉, 黄星, 等. 基于“肺与大肠相表里”探讨肠道菌群与肺结核关系的研究进展. 中国防痨杂志, 2022, 44(5):500-504. doi:10.19982/j.issn.1000-6621.20210582.
|
[37] |
Schierwagen R, Uschner FE, Ortiz C, et al. The Role of Macrophage-Inducible C-Type Lectin in Different Stages of Chronic Liver Disease. Front Immunol, 2020, 11:1352. doi:10.3389/fimmu.2020.01352.
pmid: 32733451
|
[38] |
刘懿, 谢炎红, 郑如添, 等. 活动性肺结核合并糖尿病患者血糖水平与树突状细胞亚群及T细胞亚群的相关性研究. 中国医药科学, 2024, 14(4):124-127,162. doi:10.20116/j.issn2095-0616.2024.04.29.
|
[39] |
Zhuang L, Yang L, Li L, et al. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm, 2024, 5(1): e419. doi:10.1002/mcO2.419.
pmid: 38188605
|
[40] |
Zhang YB, Liu SJ, Hu ZD, et al. Increased Th17 activation and gut microbiota diversity are associated with pembrolizumab-triggered tuberculosis. Cancer Immunol Immunother, 2020, 69(12):2665-2671. doi:10.1007/s00262-020-02687-5.
|
[41] |
谢锦慧, 喻容, 石国民, 等. 初治肺结核肠道菌群改变与免疫指标的相关性研究. 中华预防医学杂志, 2021, 55(12): 1486-1490. doi:10.3760/cma.j.cn112150-20210728-00721.
|
[42] |
Huang Y, Tang J, Cai Z, et al. Alterations in the intestinal microbiota associated with active tuberculosis and latent tuberculosis infection. Heliyon, 2023, 9(11): e22124. doi:10.1016/j.heliyon.2023.e22124.
|
[43] |
Iljazovic A, Amend L, Galvez EJC, et al. Modulation of inflammatory responses by gastrointestinal Prevotella spp.- From associations to functional studies. Int J Med Microbiol, 2021, 311(2): 151472. doi:10.1016/j.ijmm.2021.151472.
|
[44] |
Huang Y, Tang J, Cai Z, et al. Prevotella Induces the Production of Th 17 Cells in the Colon of Mice. J Immunol Res, 2020,2020:9607328. doi:10.1155/2020/9607328.
|
[45] |
Becattini S, Taur Y, Pamer EG. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol Med, 2016, 22(6): 458-478. doi:10.1016/j.molmed.2016.04.003.
pmid: 27178527
|
[46] |
Kim JH, Kim K, Kim W. Gut microbiota restoration through fecal microbiota transplantation: a new atopic dermatitis therapy. Exp Mol Med, 2021, 53(5): 907-916. doi:10.1038/s12276-021-00627-6.
|
[47] |
章敏, 唐莹, 杜希越. Notch通路与Th1/Th2细胞在结核分枝杆菌感染过程中的调节机制. 中华医院感染学杂志, 2024, 34(20):3064-3068. doi:10.11816/cn.ni.2024-231677.
|
[48] |
Abdulqadir R, Engers J, Al-Sadi R. Role of Bifidobacterium in Modulating the Intestinal Epithelial Tight Junction Barrier: Current Knowledge and Perspectives. Curr Dev Nutr, 2023, 7(12): 102026. doi:10.1016/j.cdnut.2023.102026.
|
[49] |
Heidari Z, Tajbakhsh A, Gheibihayat SM, et al. Probiotics/Prebiotics in Viral Respiratory Infections: Implication for Emerging Pathogens. Recent Pat Biotechnol, 2021, 15(2): 112-136. doi:10.2174/1872208315666210419103742.
|
[50] |
Hamad G, Saad MA, Talat D, et al. Controlling of Mycobacterium by Natural Degradant-Combination Models for Sequestering Mycolic Acids in Karish Cheese. Molecules, 2022, 27(24):8946. doi:10.3390/molecules27248946.
|
[51] |
Bravo M, Combes T, Martinez FO, et al. Lactobacilli Isolated From Wild Boar (Sus scrofa) Antagonize Mycobacterium bovis Bacille Calmette-Guerin (BCG) in a Species-Dependent Manner. Front Microbiol, 2019, 10:1663. doi:10.3389/fmicb.2019.01663.
|
[52] |
Bedu-Ferrari C, Biscarrat P, Langella P, et al. Prebiotics and the Human Gut Microbiota: From Breakdown Mechanisms to the Impact on Metabolic Health. Nutrients, 2022, 14(10):2096. doi:10.3390/nu14102096.
|
[53] |
Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr, 2010, 104(2):S1-S63. doi:10.1017/s0007114510003363.
|
[54] |
Sun MF, Shen YQ. Dysbiosis of gut microbiota and microbial metabolites in Parkinson’s Disease. Ageing Res Rev, 2018, 45:53-61. doi:10.1016/j.arr.2018.04.004.
|
[55] |
Prado C, Abatti MR, Michels M, et al. Comparative effects of fresh and sterile fecal microbiota transplantation in an experimental animal model of necrotizing enterocolitis. J Pediatr Surg, 2022, 57(9): 183-191. doi:10.1016/j.jpedsurg.2021.12.013.
|
[56] |
Boicean A, Bratu D, Fleaca SR, et al. Exploring the Potential of Fecal Microbiota Transplantation as a Therapy in Tuberculosis and Inflammatory Bowel Disease. Pathogens, 2023, 12(9):1149. doi:10.3390/pathogens12091149.
|
[57] |
Li Y, Meng Q, Yang M, et al. Current trends in drug meta-bolism and pharmacokinetics. Acta Pharm Sin B, 2019, 9(6): 1113-1144. doi:10.1016/j.apsb.2019.10.001.
|
[58] |
Shah T, Baloch Z, Shah Z, et al. The Intestinal Microbiota: Impacts of Antibiotics Therapy, Colonization Resistance, and Diseases. Int J Mol Sci, 2021, 22(12):6597. doi:10.3390/ijms22126597.
|
[59] |
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev, 2017, 279(1): 90-105. doi:10.1111/imr.12563.
pmid: 28856737
|
[60] |
夏心怡, 高良烽, 宁茜茜, 等. 益生菌联合药食同源材料改善常用抗结核药所致小鼠肝损伤和肠道菌群紊乱的作用. 中国微生态学杂志, 2022, 34(7):745-750. doi:10.13381/j.cnki.cjm.202207001.
|