[1] |
王吉耀, 葛均波, 邹和建. 实用内科学. 16版. 北京: 人民卫生出版社,2022: 446.
|
[2] |
Zhou G, Luo Q, Luo S, et al. Indeterminate results of interferon gamma release assays in the screening of latent tuberculosis infection: a systematic review and meta-analysis. Front Immunol, 2023, 14: 1170579. doi:10.3389/fimmu.2023.1170579.
|
[3] |
Li LS, Yang L, Zhuang L, et al. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res, 2023, 10(1): 58. doi:10.1186/s40779-023-00490-8.
|
[4] |
Flynn JL, Chan J. Immune cell interactions in tuberculosis. Cell, 2022, 185(25): 4682-4702. doi:10.1016/j.cell.2022.10.025.
pmid: 36493751
|
[5] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1): 9-27. doi:10.19982/j.issn.1000-6621.20210680.
|
[6] |
Lyashchenko KP, Vordermeier HM, Waters WR. Memory B cells and tuberculosis. Vet Immunol Immunopathol, 2020, 221: 110016. doi:10.1016/j.vetimm.2020.110016.
|
[7] |
Rijnink WF, Ottenhoff THM, Joosten SA. B-cells and antibodies as contributors to effector immune responses in tuberculosis. Front Immunol, 2021, 12: 640168. doi:10.3389/fimmu.2021.640168.
|
[8] |
郭萌, 吴文, 李敬文, 等. 基于文献计量学的“结核”主题高被引文献特征分析. 中国防痨杂志, 2024, 46(5): 567-577. doi:10.19982/j.issn.1000-6621.20240075.
|
[9] |
Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet, 2020, 52(10): 1036-1045. doi:10.1038/s41588-020-0684-4.
|
[10] |
Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet, 2015, 47(11): 1272-1281. doi:10.1038/ng.3368.
pmid: 26366554
|
[11] |
Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry, 2023, 23(1): 590. doi:10.1186/s12888-023-05081-4.
|
[12] |
鲁印飞, 李龙, 赵霞, 等. 基于双向孟德尔随机化研究循环免疫细胞与冠心病风险之间的因果关系. 华中科技大学学报(医学版), 2024, 53(4):487-493. doi:10.3870/j.issn.1672-0741.24.03.002.
|
[13] |
Sproviero W, Winchester L, Newby D, et al. High blood pressure and risk of dementia: a two-sample Mendelian randomization study in the UK Biobank. Biol Psychiatry, 2021, 89(8): 817-824. doi:10.1016/j.biopsych.2020.12.015.
|
[14] |
Niu PP, Song B, Wang X, et al. Serum uric acid level and multiple sclerosis: a mendelian randomization study. Front Genet, 2020, 11: 254. doi:10.3389/fgene.2020.00254.
|
[15] |
Su D, Ai Y, Zhu G, et al. Genetically predicted circulating levels of cytokines and the risk of osteoarthritis: A mendelian randomization study. Front Genet, 2023, 14: 1131198. doi:10.3389/fgene.2023.1131198.
|
[16] |
吴广涛, 秦刚, 何凯毅, 等. 免疫细胞与膝骨关节炎之间因果作用:一项两样本双向孟德尔随机化分析. 中国组织工程研究, 2025, 29(5):1081-1090. doi:10.12307/2025.292.
|
[17] |
Linge I, Kondratieva E, Apt A. Prolonged B-lymphocyte-mediated immune and inflammatory responses to tuberculosis infection in the lungs of TB-resistant mice. Int J Mol Sci, 2023, 24(2): 1140. doi:10.3390/ijms24021140.
|
[18] |
Choreño-Parra JA, Bobba S, Rangel-Moreno J, et al. Mycobacterium tuberculosis HN878 infection induces human-like B-cell follicles in mice. J Infect Dis, 2020, 221(10): 1636-1646. doi:10.1093/infdis/jiz663.
pmid: 31832640
|
[19] |
Abreu MT, Carvalheiro H, Rodrigues-Sousa T, et al. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin Exp Med, 2014, 14(4): 423-429. doi:10.1007/s10238-013-0258-1.
pmid: 24068613
|
[20] |
Otero DC, Rickert RC. CD 19 function in early and late B cell development. Ⅱ. CD 19 facilitates the pro-B/pre-B transition. J Immunol, 2003, 171(11): 5921-5930. doi:10.4049/jimmunol.171.11.5921.
|
[21] |
陈兵月, 张文艺, 王东侠, 等. CD38分子表达与成年人急性B淋巴细胞白血病预后的关系. 标记免疫分析与临床, 2011, 18(3):196-198. doi:10.3969/j.issn.1006-1703.2011.03.023.
|
[22] |
Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection. Oral Dis, 2016, 22 Suppl: 53-60. doi:10.1111/odi.12390.
|
[23] |
Tippalagama R, Singhania A, Dubelko P, et al. HLA-DR marks recently divided antigen-specific effector CD 4 T cells in active tuberculosis patients. J Immunol, 2021, 207(2): 523-533. doi:10.4049/jimmunol.2100011.
pmid: 34193602
|
[24] |
刘蒙蒙, 杜忠华, 胡瑞萍, 等. CD45RA/CD45RO过渡表达γδ型T细胞急性淋巴细胞白血病1例报道并文献复习. 中国医学前沿杂志(电子版), 2022, 14(9):50-53. doi:10.12037/YXQY.2022.09-09.
|
[25] |
Cao RR, Yu XH, Xiong MF, et al. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol, 2022, 13: 959417. doi:10.3389/fimmu.2022.959417.
|
[26] |
Song JW, Huang HH, Zhang C, et al. Expression of CD39 is correlated with HIV DNA levels in naïve tregs in chronically infected ART naïve patients. Front Immunol, 2019, 10: 2465. doi:10.3389/fimmu.2019.02465.
|
[27] |
Tang Y, Jiang L, Zheng Y, et al. Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection. BMC Immunol, 2012, 13: 17. doi:10.1186/1471-2172-13-17.
pmid: 22489829
|
[28] |
Zhang XW, Bi XW, Liu PP, et al. Expression of PD-L 1 on monocytes is a novel predictor of prognosis in natural killer/T-cell lymphoma. Front Oncol, 2020, 10: 1360. doi:10.3389/fonc.2020.01360.
|
[29] |
Pan SW, Shu CC, Huang JR, et al. PD-L1 expression in monocytes correlates with bacterial burden and treatment outcomes in active pulmonary tuberculosis. Int J Mol Sci, 2022, 23(3): 1619. doi:10.3390/ijms23031619.
|
[30] |
Hillman H, Khan N, Singhania A, et al. Single-cell profiling reveals distinct subsets of CD14+ monocytes drive blood immune signatures of active tuberculosis. Front Immunol, 2023, 13: 1087010. doi:10.3389/fimmu.2022.1087010.
|
[31] |
Lugo-Villarino G, Neyrolles O. Dressed not to kill: CD16+ monocytes impair immune defence against tuberculosis. Eur J Immunol, 2013, 43(2): 327-330. doi:10.1002/eji.201243256.
pmid: 23322255
|