[1] |
Goosby E, Jamison D, Swaminathan S, et al. The Lancet Commission on tuberculosis: building a tuberculosis-free world. Lancet, 2018,391(10126):1132-1133. doi: 10.1016/S0140-6736(18)30666-4.
|
[2] |
Lalor MK, Anderson LF, Hamblion EL, et al. Recent household transmission of tuberculosis in England, 2010—2012: retrospective national cohort study combining epidemiological and molecular strain typing data. BMC Med, 2017,15(1):105. doi: 10.1186/s12916-017-0864-y.
|
[3] |
Zakham F, Laurent S, Esteves Carreira AL, et al. Whole-genome sequencing for rapid, reliable and routine investigation of Mycobacterium tuberculosis transmission in local communities. New Microbes New Infect, 2019,31:100582. doi: 10.1016/j.nmni.2019.100582.
|
[4] |
Stucki D, Ballif M, Egger M, et al. Standard genotyping overestimates transmission of Mycobacterium tuberculosis among immigrants in a low-incidence country. J Clin Microbiol, 2016,54(7):1862-1870. doi: 10.1128/JCM.00126-16.
|
[5] |
Dippenaar A, De Vos M, Marx FM, et al. Whole genome sequencing provides additional insights into recurrent tuberculosis classified as endogenous reactivation by IS6110 DNA fingerprinting. Infect Genet Evol, 2019,75:103948. doi: 10.1016/j.meegid.2019.103948.
|
[6] |
Pepperell CS, Granka JM, Alexander DC, et al. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade. Proc Natl Acad Sci USA, 2011,108(16):6526-6531. doi: 10.1073/pnas.1016708108.
|
[7] |
O’Neill MB, Shockey A, Zarley A, et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol, 2019,28(13):3241-3256. doi: 10.1111/mec.15120.
|
[8] |
Luo T, Comas I, Luo D, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA, 2015,112(26):8136-8141. doi: 10.1073/pnas.1424063112.
|
[9] |
Bjorn-Mortensen K, Soborg B, Koch A, et al. Tracing Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence setting: a retrospective population-based study in East Greenland. Sci Rep, 2016,6:33180. doi: 10.1038/srep33180.
|
[10] |
Lee RS, Radomski N, Proulx JF, et al. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci USA, 2015,112(44):13609-13614. doi: 10.1073/pnas.1507071112.
|
[11] |
Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet, 2018,50(6):849-856. doi: 10.1038/s41588-018-0117-9.
|
[12] |
Liu Q, Ma A, Wei L, et al. China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol, 2018,2(12):1982-1992. doi: 10.1038/s41559-018-0680-6.
|
[13] |
高谦, 杨崇广. 我国结核病近期传播与控制策略. 结核病与肺部健康杂志, 2017,6(3):193-198. doi: 10.3969/j.issn.2095-3755.2017.03.001
|
[14] |
World Health Organization. Recommendations for investigating contacts of persons with infectious tuberculosis in low- and middle-income countries. Geneva: World Health Organization, 2012.
|
[15] |
van der Werf MJ, Ködmön C. Whole-Genome sequencing as tool for investigating international tuberculosis outbreaks: a systematic review. Front Public Health, 2019,7:87. doi: 10.3389/fpubh.2019.00087.
|
[16] |
Arnold A, Witney AA, Vergnano S, et al. XDR-TB transmission in London: Case management and contact tracing investigation assisted by early whole genome sequencing. J Infect, 2016,73(3):210— 218. doi: 10.1016/j.jinf.2016.04.037.
|
[17] |
Walker TM, Merker M, Knoblauch AM, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study. Lancet Infect Dis, 2018,18(4):431-440. doi: 10.1016/S1473-3099(18)30004-5.
|
[18] |
Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a re-trospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017,17(3):275-284. doi: 10.1016/S1473-3099(16)30418-2.
|
[19] |
Liu Q, Zuo T, Xu P, et al. Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect, 2018,7(1):98. doi: 10.1038/s41426-018-0101-6.
|
[20] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
|
[21] |
Moradigaravand D, Grandjean L, Martinez E, et al. dfrA thyA Double Deletion in para-Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing Strains. Antimicrob Agents Chemother, 2016,60(6):3864-3867. doi: 10.1128/AAC.00253-16.
|
[22] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016,60(8):4590-4599. doi: 10.1128/AAC.00753-16.
|
[23] |
Trauner A, Liu Q, Via LE, et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol, 2017,18(1):71. doi: 10.1186/s13059-017-1196-0.
|
[24] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8.
|
[25] |
Iwai H, Kato-Miyazawa M, Kirikae T, et al. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): A publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis (Edinb), 2015,95(6):843-844. doi: 10.1016/j.tube.2015.09.002.
|
[26] |
Schleusener V, Koser CU, Beckert P, et al. Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Sci Rep, 2017,7:46327. doi: 10.1038/srep46327.
|
[27] |
van Beek J, Haanpera M, Smit PW, et al. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect, 2019,25(1):82-86. doi: 10.1016/j.cmi.2018.03.041.
|
[28] |
Deelder W, Christakoudi S, Phelan J, et al. Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Front Genet, 2019,10:922. doi: 10.3389/fgene.2019.00922.
|
[29] |
高旭, 李静, 柳清云, 等. 异质性耐药对结核分枝杆菌表型和基因型耐药检测结果的影响. 中华结核和呼吸杂志, 2014,37(4):260-265. doi: 10.3760/cma.j.issn.1001-0939.2014.04.007
|
[30] |
Navarro Y, Perez-Lago L, Herranz M, et al. In-Depth Chara-cterization and Functional Analysis of Clonal Variants in a Mycobacterium tuberculosis Strain Prone to Microevolution. Front Microbiol, 2017,8:694. doi: 10.3389/fmicb.2017.00694.
|
[31] |
Ley SD, de Vos M, Van Rie A, et al. Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev, 2019,83(2):e00062-18. doi: 10.1128/MMBR.00062-18.
|
[32] |
Bespyatykh J, Shitikov E, Bespiatykh D, et al. Metabolic Changes of Mycobacterium tuberculosis during the Anti-Tuberculosis Therapy. Pathogens, 2020,9(2):E131. doi: 10.3390/pathogens9020131.
|
[33] |
Auld SC, Shah NS, Mathema B, et al. Extensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communities. Eur Respir J, 2018,52(4):1800246. doi: 10.1183/13993003.00246-2018.
|
[34] |
Tagliani E, Cirillo DM, Ködmön C, et al. EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infect Dis, 2018,18(4):377. doi: 10.1016/S1473-3099(18)30132-4.
|
[35] |
Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019,17(9):533-545. doi: 10.1038/s41579-019-0214-5.
|
[36] |
Crisan A, McKee G, Munzner T, et al. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory. PeerJ, 2018,6:e4218. doi: 10.7717/peerj.4218.
|
[37] |
Tornheim JA, Starks AM, Rodwell TC, et al. Building the framework for standardized clinical laboratory reporting of next generation sequencing data for resistance-associated mutations in Mycobacterium tuberculosis complex. Clin Infect Dis, 2019,69(9):1631-1633. doi: 10.1093/cid/ciz219.
|