中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (12): 1333-1338.doi: 10.3969/j.issn.1000-6621.2020.12.016
收稿日期:
2020-05-08
出版日期:
2020-12-10
发布日期:
2020-12-24
通信作者:
张文龙
E-mail:18920180058@189.cn
基金资助:
TANG Liang, BAO Yu-cheng, ZHANG Wen-long()
Received:
2020-05-08
Online:
2020-12-10
Published:
2020-12-24
Contact:
ZHANG Wen-long
E-mail:18920180058@189.cn
摘要:
肠道菌群的结构和代谢产物与人体互相作用,维持肠道屏障稳态,促进全身营养代谢与免疫平衡,参与多种系统及组织、器官的病理生理过程,在结核感染、发病、治疗及转归过程中发挥重要作用,但是抗结核药品对肠道菌群的影响研究刚刚起步。作者综述肠道菌群在肠道屏障稳态中的作用,进而梳理和总结抗结核药品对肠道菌群影响的研究成果,并最终扩展至相关临床问题,讨论肠道菌群改变对机体的广泛影响。
唐亮, 鲍玉成, 张文龙. 抗结核药品对肠道菌群的改变及其对机体的影响[J]. 中国防痨杂志, 2020, 42(12): 1333-1338. doi: 10.3969/j.issn.1000-6621.2020.12.016
TANG Liang, BAO Yu-cheng, ZHANG Wen-long. Effects of anti-tubercular agents on intestinal flora and its influence on the organism[J]. Chinese Journal of Antituberculosis, 2020, 42(12): 1333-1338. doi: 10.3969/j.issn.1000-6621.2020.12.016
[1] |
Naidoo CC, Nyawo GR, Wu BG, et al. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med, 2019,7(10):892-906. doi: 10.1016/S2213-2600(18)30501-0.
doi: 10.1016/S2213-2600(18)30501-0 URL pmid: 30910543 |
[2] |
Zhang Y, Wu S, Xia Y, et al. Adverse Events Associated with Treatment of Multidrug-Resistant Tuberculosis in China: An Ambispective Cohort Study. Med Sci Monit, 2017,23:2348-2356. doi: 10.12659/msm.904682.
doi: 10.12659/msm.904682 URL pmid: 28520704 |
[3] |
Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med, 2018,24(4):392-400. doi: 10.1038/nm.4517.
doi: 10.1038/nm.4517 URL pmid: 29634682 |
[4] |
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev, 2017,279(1):90-105. doi: 10.1111/imr.12563.
doi: 10.1111/imr.12563 URL pmid: 28856737 |
[5] |
Fujisaka S, Avila-Pacheco J, Soto M, et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep, 2018,22(11):3072-3086. doi: 10.1016/j.celrep.2018.02.060.
doi: 10.1016/j.celrep.2018.02.060 URL pmid: 29539432 |
[6] |
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome, 2019,7(1):91. doi: 10.1186/s40168-019-0704-8.
doi: 10.1186/s40168-019-0704-8 URL pmid: 31196177 |
[7] |
Hu J, Lin S, Zheng B, et al. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr, 2018,58(8):1243-1249. doi: 10.1080/10408398.2016.1245650.
doi: 10.1080/10408398.2016.1245650 URL pmid: 27786539 |
[8] |
MacPherson CW, Shastri P, Mathieu O, et al. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs Between Single and Multi-Strain Probiotic Combination. PLoS One, 2017,12(1):e0169847. doi: 10.1371/journal.pone.0169847.
doi: 10.1371/journal.pone.0169847 URL pmid: 28099447 |
[9] |
Ashida N, Yanagihara S, Shinoda T, et al. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J Biosci Bioeng, 2011,112(4):333-337. doi: 10.1016/j.jbiosc.2011.06.001.
doi: 10.1016/j.jbiosc.2011.06.001 URL |
[10] |
Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011,9(5):356-368. doi: 10.1038/nrmicro2546.
doi: 10.1038/nrmicro2546 URL pmid: 21423246 |
[11] |
Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites . Nature, 2019,566(7742):110-114. doi: 10.1038/s41586-019-0884-1.
doi: 10.1038/s41586-019-0884-1 URL pmid: 30675063 |
[12] |
Ducarmon QR, Zwittink RD, Hornung BVH, et al. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev, 2019,83(3):e00007-19. doi: 10.1128/MMBR.00007-19.
doi: 10.1128/MMBR.00007-19 URL pmid: 31167904 |
[13] |
Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe, 2014,16(3):276-289. doi: 10.1016/j.chom.2014.08.014.
doi: 10.1016/j.chom.2014.08.014 URL |
[14] |
Karczewski J, Poniedziałek B, Adamski Z, et al. The effects of the microbiota on the host immune system. Autoimmunity, 2014,47(8):494-504. doi: 10.3109/08916934.2014.938322.
doi: 10.3109/08916934.2014.938322 URL |
[15] |
Sircana A, Framarin L, Leone N, et al. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep, 2018,18(10):98. doi: 10.1007/s11892-018-1057-6.
doi: 10.1007/s11892-018-1057-6 URL pmid: 30215149 |
[16] |
Vujkovic-Cvijin I, Somsouk M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep, 2019,16(3):204-213. doi: 10.1007/s11904-019-00441-w.
doi: 10.1007/s11904-019-00441-w URL pmid: 31037552 |
[17] |
Chu F, Shi M, Lang Y, et al. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm, 2018,2018:8168717. doi: 10.1155/2018/8168717.
doi: 10.1155/2018/8168717 URL pmid: 29805314 |
[18] |
Lange K, Buerger M, Stallmach A, et al. Effects of Antibio-tics on Gut Microbiota. Dig Dis, 2016,34(3):260-268. doi: 10.1159/000443360.
doi: 10.1159/000443360 URL pmid: 27028893 |
[19] |
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci, 2020,1467(1):21-47. doi: 10.1111/nyas.14300.
doi: 10.1111/nyas.14300 URL pmid: 31989644 |
[20] | 唐神结, 高文. 临床结核病学. 2版. 北京: 人民卫生出版社, 2019: 251-287. |
[21] |
Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017,5(1):71. doi: 10.1186/s40168-017-0286-2.
doi: 10.1186/s40168-017-0286-2 URL pmid: 28683818 |
[22] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019,12(3):772-783. doi: 10.1038/s41385-019-0147-3.
doi: 10.1038/s41385-019-0147-3 URL pmid: 30783183 |
[23] |
Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep, 2017,7(1):10767. doi: 10.1038/s41598-017-10346-6.
doi: 10.1038/s41598-017-10346-6 URL pmid: 28883399 |
[24] |
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016,167(4):1125-1136. doi: 10.1016/j.cell.2016.10.020.
doi: 10.1016/j.cell.2016.10.020 URL pmid: 27814509 |
[25] |
Tan TG, Sefik E, Geva-Zatorsky N, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A, 2016,113(50):E8141-8150. doi: 10.1073/pnas.1617460113.
doi: 10.1073/pnas.1617460113 URL pmid: 27911839 |
[26] |
Luo M, Liu Y, Wu P, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol, 2017,8:822. doi: 10.3389/fphys.2017.00822.
doi: 10.3389/fphys.2017.00822 URL pmid: 29204120 |
[27] |
Maji A, Misra R, Dhakan DB, et al. Gut microbiome contri-butes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol, 2018,20(1):402-419. doi: 10.1111/1462-2920.14015.
doi: 10.1111/1462-2920.14015 URL pmid: 29322681 |
[28] |
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect, 2019,78(4):317-322. doi: 10.1016/j.jinf.2018.08.006.
doi: 10.1016/j.jinf.2018.08.006 URL pmid: 30107196 |
[29] |
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol, 2019,9:299. doi: 10.3389/fcimb.2019.00299.
doi: 10.3389/fcimb.2019.00299 URL pmid: 31497538 |
[30] |
Verver S, Warren RM, Beyers N, et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med, 2005,171(12):1430-1435. doi: 10.1164/rccm.200409-1200OC.
doi: 10.1164/rccm.200409-1200OC URL pmid: 15831840 |
[31] |
Glynn JR, Murray J, Bester A, et al. High rates of recurrence in HIV-infected and HIV-uninfected patients with tuberculosis. J Infect Dis, 2010,201(5):704-711. doi: 10.1086/650529.
doi: 10.1086/650529 URL pmid: 20121434 |
[32] |
Lopetuso LR, Scaldaferri F, Petito V, et al. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog, 2013,5(1):23. doi: 10.1186/1757-4749-5-23.
doi: 10.1186/1757-4749-5-23 URL pmid: 23941657 |
[33] |
Serino M. SCFAs-the thin microbial metabolic line between good and bad. Nat Rev Endocrinol, 2019,15(6):318-319. doi: 10.1038/s41574-019-0205-7.
doi: 10.1038/s41574-019-0205-7 URL pmid: 30976118 |
[34] |
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature, 2020,577(7790):410-415. doi: 10.1038/s41586-019-1865-0.
doi: 10.1038/s41586-019-1865-0 URL pmid: 31875848 |
[35] |
Negatu DA, Yamada Y, Xi Y, et al. Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in Mycobacterium tuberculosis. mBio, 2019,10(2):e02781-18. doi: 10.1128/mBio.02781-18.
doi: 10.1128/mBio.02781-18 URL pmid: 30914514 |
[36] |
Shen Y, Giardino Torchia ML, Lawson GW, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe, 2012,12(4):509-520. doi: 10.1016/j.chom.2012.08.004.
doi: 10.1016/j.chom.2012.08.004 URL |
[37] |
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013,54(9):2325-2340. doi: 10.1194/jlr.R036012.
doi: 10.1194/jlr.R036012 URL |
[38] |
Negi S, Pahari S, Bashir H, et al. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front Immunol, 2019,10:1142. doi: 10.3389/fimmu.2019.01142.
doi: 10.3389/fimmu.2019.01142 URL pmid: 31231363 |
[39] |
Segal LN, Clemente JC, Li Y, et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe, 2017,21(4):530-537. doi: 10.1016/j.chom.2017.03.003.
doi: 10.1016/j.chom.2017.03.003 URL pmid: 28366509 |
[40] | 李慧, 田芝奥, 吴霞. 648例结核病患者抗结核药物所致不良反应及危险因素分析. 中国防痨杂志, 2017,39(11):1241-1246. doi: 10.3969/j.issn.1000-6621.2017.11.018. |
[41] | Bull MJ, Plummer NT. Part 2: Treatments for Chronic Gastrointestinal Disease and Gut Dysbiosis. Integr Med (Encinitas), 2015,14(1):25-33. |
[42] |
Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostri-dium difficile. Nature, 2015,517(7533):205-208. doi: 10.1038/nature13828.
doi: 10.1038/nature13828 URL pmid: 25337874 |
[43] |
Lu Q, Lai J, Lu H, et al. Gut Microbiota in Bipolar Depression and Its Relationship to Brain Function: An Advanced Exploration. Front Psychiatry, 2019,10:784. doi: 10.3389/fpsyt.2019.00784.
doi: 10.3389/fpsyt.2019.00784 URL pmid: 31736803 |
[44] | 王静, 张蒙, 贺建清. 抗结核药物引起的艰难梭状芽胞杆菌相关性腹泻一例并文献复习. 中国防痨杂志, 2020,42(3):293-296. doi: 10.3969/j.issn.1000-6621.2020.03.021. |
[45] |
Kalakuntla AS, Nalakonda G, Nalakonda K, et al. Probiotics and Clostridium Difficile: A Review of Dysbiosis and the Rehabilitation of Gut Microbiota. Cureus, 2019,11(7):e5063. doi: 10.7759/cureus.5063.
doi: 10.7759/cureus.5063 URL pmid: 31516774 |
[46] |
Amrane S, Hocquart M, Afouda P, et al. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostri-dium difficile infection. Sci Rep, 2019,9(1):12807. doi: 10.1038/s41598-019-49189-8.
doi: 10.1038/s41598-019-49189-8 URL pmid: 31488869 |
[47] |
Thanissery R, Winston JA, Theriot CM. Inhibition of Spore Germination, Growth, and Toxin Activity of Clinically Relevant C. Difficile Strains by Gut Microbiota Derived Secondary Bile Acids. Anaerobe, 2017,45:86-100. doi: 10.1016/j.anaerobe.2017.03.004.
doi: 10.1016/j.anaerobe.2017.03.004 URL pmid: 28279860 |
[48] |
Buffie C, Bucci V, Stein RR, et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature, 2015,517(7533):205-208. doi: 10.1038/nature13828.
doi: 10.1038/nature13828 URL pmid: 25337874 |
[49] |
Kang JD, Myers CJ, Harris SC, et al. Bile Acid 7α-Dehydroxy-lating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chem Biol, 2019,26(1):27-34. doi: 10.1016/j.chembiol.2018.10.003.
doi: 10.1016/j.chembiol.2018.10.003 URL pmid: 30482679 |
[50] |
Pepin J, Saheb N, Coloumbe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis, 2005,41(9):1254-1260. doi: 10.1086/496986.
doi: 10.1086/496986 URL pmid: 16206099 |
[51] |
Saxton K, Baines SD, Freeman J, et al. Effects of Exposure of Clostridium difficile PCR Ribotypes 027 and 001 to Fluoroquinolones in a Human Gut Model. Antimicrob Agents Chemother, 2009,53(2):412-420. doi: 10.1128/AAC.00306-08.
doi: 10.1128/AAC.00306-08 URL pmid: 18710908 |
[52] |
Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis, 2001,1(2):101-114. doi: 10.1016/S1473-3099(01)00066-4.
doi: 10.1016/S1473-3099(01)00066-4 URL pmid: 11871461 |
[53] |
Edlund C, Beyer G, Hiemer-Bau M, et al. Comparative effects of moxifloxacin and clarithromycin on the normal intestinal microflora. Scand J Infect Dis, 2000,32(1):81-85. doi: 10.1080/00365540050164272.
doi: 10.1080/00365540050164272 URL pmid: 10716083 |
[54] |
Zhu S, Liu S, Li H, et al. Identification of gut microbiota and metabolites signature in patients with irritable bowel syndrome. Front Cell Infect Microbiol, 2019,9:346. doi: 10.3389/fcimb.2019.00346.
doi: 10.3389/fcimb.2019.00346 URL pmid: 31681624 |
[55] |
El Hamdouni M, Ahid S, Bourkadi JE, et al. Incidence of adverse reactions caused by first-line anti-tuberculosis drugs and treatment outcome of pulmonary tuberculosis patients in Morocco. Infection, 2020,48(1):43-50. doi: 10.1007/s15010-019-01324-3.
doi: 10.1007/s15010-019-01324-3 URL pmid: 31165445 |
[56] |
Prasad R, Singh A, Gupta N. Adverse drug reactions in tuberculosis and management. Indian J Tuberc, 2019,66(4):520-532. doi: 10.1016/j.ijtb.2019.11.005.
doi: 10.1016/j.ijtb.2019.11.005 URL pmid: 31813444 |
[57] |
Lv X, Tang S, Xia Y, et al. Adverse reactions due to directly observed treatment strategy therapy in Chinese tuberculosis patients: a prospective study. PLoS One, 2013,8(6):e65037. doi: 10.1371/journal.pone.0065037.
doi: 10.1371/journal.pone.0065037 URL pmid: 23750225 |
[58] |
Damasceno GS, Guaraldo L, Engstrom EM, et al. Adverse reactions to antituberculosis drugs in Manguinhos, Rio de Janeiro, Brazil. Clinics (Sao Paulo), 2013,68(3):329-337. doi: 10.6061/clinics/2013(03)oa08.
doi: 10.6061/clinics URL |
[59] |
Lin S, Zhao S, Liu J, et al. Efficacy of proprietary Lactobacillus casei for anti-tuberculosis associated gastrointestinal adverse reactions in adult patients: a randomized, open-label, dose-response trial. Food Funct, 2020,11(1):370-377. doi: 10.1039/c9fo01583c.
doi: 10.1039/c9fo01583c URL pmid: 31815260 |
[60] |
Canani RB, Costanzo MD, Leone L, et al. Potential bene cial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol, 2011,17(12):1519-1528. doi: 10.3748/wjg.v17.i12.1519.
doi: 10.3748/wjg.v17.i12.1519 URL pmid: 21472114 |
[61] |
Wadhwa A, Al Nahhas MF, Dierkhising RA, et al. High risk of post-infectious irritable bowel syndrome in patients with Clostridium difficile infection. Aliment Pharmacol Ther, 2016,44(6):576-582. doi: 10.1111/apt.13737.
doi: 10.1111/apt.13737 URL pmid: 27444134 |
[62] | Zhao Y, Qian L. Homocysteine-mediated intestinal epithelial barrier dysfunction in the rat model of irritable bowel syndrome caused by maternal separation. Acta Biochim Biophys Sin(Shanghai), 2014,46(10):917-919. doi: 10.1093/abbs/gmu076. |
[63] |
Pittayanon R, Lau JT, Yuan Y, et al. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review. Gastroenterology, 2019,157(1):97-108. doi: 10.1053/j.gastro.2019.03.049.
doi: 10.1053/j.gastro.2019.03.049 URL pmid: 30940523 |
[64] | Ohkusa T, Koido S, Nishikawa Y, et al. Gut Microbiota and Chronic Constipation: A Review and Update. Front Med (Lausanne), 2019,6:19. doi: 10.3389/fmed.2019.00019. |
[65] |
Noorbakhsh H, Yavarmanesh M, Mortazavi SA, et al. Metabolomics analysis revealed metabolic changes in patients with diarrhea-predominant irritable bowel syndrome and metabolic responses to a synbiotic yogurt intervention. Eur J Nutr, 2019,58(8):3109-3119. doi: 10.1007/s00394-018-1855-2.
doi: 10.1007/s00394-018-1855-2 URL pmid: 30392136 |
[66] |
Distrutti E, Monaldi L, Ricci P, et al. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol, 2016,22(7):2219-2241. doi: 10.3748/wjg.v22.i7.2219.
doi: 10.3748/wjg.v22.i7.2219 URL pmid: 26900286 |
[67] |
Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog, 2017,106:127-138. doi: 10.1016/j.micpath.2016.02.003.
doi: 10.1016/j.micpath.2016.02.003 URL pmid: 26853753 |
[68] |
Jiao Y, Wu L, Huntington ND, et al. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol, 2020,11:282. doi: 10.3389/fimmu.2020.00282.
doi: 10.3389/fimmu.2020.00282 URL pmid: 32153586 |
[69] |
Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017,279(1):70-89. doi: 10.1111/imr.12567.
doi: 10.1111/imr.12567 URL pmid: 28856738 |
[70] |
Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders. Nutrients, 2020,12(4):1082. doi: 10.3390/nu12041082.
doi: 10.3390/nu12041082 URL |
[1] | 刘晓莉, 雷丽梅, 郭周莉, 黄殷, 徐静, 赵霞, 王燕, 付莉. 结核病患者产生病耻感与领悟社会支持的相关性研究[J]. 中国防痨杂志, 2020, 42(9): 1002-1008. |
[2] | 中国防痨协会学术工作委员会《中国防痨杂志》编辑委员会. 抗结核药品固定剂量复合制剂的临床使用专家共识[J]. 中国防痨杂志, 2020, 42(9): 885-893. |
[3] | 靳鸿建. 我国县级结核病防治服务体系建设及防治工作亟需加强——一位老防痨工作者的意见和建议[J]. 中国防痨杂志, 2020, 42(9): 896-902. |
[4] | 张灿有, 夏辉, 成君. Ⅱ级生物安全柜在结核病实验室中的检测及报告要求[J]. 中国防痨杂志, 2020, 42(9): 903-909. |
[5] | 周林, 刘二勇, 孟庆琳, 陈明亭, 周新华, 高微微, 林明贵, 谢汝明. 《WS 288—2017 肺结核诊断》标准实施后肺结核诊断质量评估分析[J]. 中国防痨杂志, 2020, 42(9): 910-915. |
[6] | 刘二勇, 王前, 周林, 张国钦, 张修磊, 马永成, 杨枢敏, 王毳, 孟庆琳, 陈明亭, 林明贵, 屠德华. 我国部分地区病原学检测阴性肺结核诊断质量现状分析[J]. 中国防痨杂志, 2020, 42(9): 916-920. |
[7] | 孟庆琳, 李进岚, 林定文, 马永成, 侯双翼, 刘年强, 周林. 结核病防治从业人员对新的结核病标准相关知识知晓情况调查分析[J]. 中国防痨杂志, 2020, 42(9): 921-925. |
[8] | 王前, 周林, 刘二勇, 赵雁林, 李涛, 陈明亭, 杨丽佳, 王嘉. 我国县级结核病定点医疗机构结核病诊断能力现况调查研究[J]. 中国防痨杂志, 2020, 42(9): 926-930. |
[9] | 李婷, 何金戈, 苏茜, 李京, 李运葵, 高文凤, 高媛, 杨文. 结核菌素试验在四川省布拖县HIV感染/AIDS患者中筛查结核感染的价值[J]. 中国防痨杂志, 2020, 42(9): 931-936. |
[10] | 李运葵, 何金戈, 苏茜, 李婷, 李京, 高文凤, 杨文, 毛光玉. 结核病症状筛查在四川省布拖县HIV感染/AIDS患者中发现结核病患者的价值[J]. 中国防痨杂志, 2020, 42(9): 937-941. |
[11] | 苏茜, 夏勇, 逯嘉, 王丹霞, 何金戈. 2009—2018年四川省0~14 岁儿童肺结核流行特征分析[J]. 中国防痨杂志, 2020, 42(9): 942-947. |
[12] | 邓亚丽, 张天华, 刘卫平, 张宏伟, 马煜, 李鹏. 2014—2018年陕西省肺结核发病的时空聚集性分析[J]. 中国防痨杂志, 2020, 42(9): 948-955. |
[13] | 董晓, 赵珍, 刘年强, 王森路, 崔燕. 2009—2017年新疆维吾尔自治区老年肺结核发现特征分析[J]. 中国防痨杂志, 2020, 42(9): 956-961. |
[14] | 马廷龙, 韩毅, 程序, 刘志东. 超声抗结核药品电导入联合化疗对胸壁结核的疗效观察[J]. 中国防痨杂志, 2020, 42(9): 968-972. |
[15] | 南海, 张芸, 杨新婷, 段鸿飞. GeneXpert MTB/RIF对骨关节结核诊断价值的Meta分析[J]. 中国防痨杂志, 2020, 42(9): 973-980. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||