中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (8): 880-884.doi: 10.3969/j.issn.1000-6621.2020.08.019
• 综述 • 上一篇
收稿日期:
2020-04-22
出版日期:
2020-08-10
发布日期:
2020-08-10
通信作者:
王桂荣
E-mail:wangguirong1230@ccmu.edu.cn
基金资助:
SUN Qing, HUANG Hai-rong, WANG Gui-rong()
Received:
2020-04-22
Online:
2020-08-10
Published:
2020-08-10
Contact:
WANG Gui-rong
E-mail:wangguirong1230@ccmu.edu.cn
摘要:
近年来,非结核分枝杆菌(non-tuberculous mycobacteria, NTM)引起的感染呈逐渐上升趋势,严重威胁人类健康。NTM致病的菌种繁多,不同菌种NTM对药品的敏感性各异,使其治疗存在较大困难。因此,寻找NTM病治疗效果较佳的药品非常有必要。NTM种属分布常具有地域特点,在多数地区鸟-胞内分枝杆菌复合群、脓肿分枝杆菌和堪萨斯分枝杆菌为较常见的致病菌种。贝达喹啉(bedaquiline, Bdq)、氯法齐明(clofazimine,Cfz)及德拉马尼(delamanid,Dlm)因对治疗NTM病体现出了良好的治疗潜力而受到泛关注。为了提高对抗NTM药品敏感性及耐药机制的认识,作者就Bdq、Cfz和Dlm对以上常见致病性NTM的体外抑菌活性及耐药相关机制进行综述。
孙晴, 黄海荣, 王桂荣. 贝达喹啉、氯法齐明和德拉马尼对常见致病性非结核分枝杆菌体外抑菌活性及耐药机制的研究进展[J]. 中国防痨杂志, 2020, 42(8): 880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019
SUN Qing, HUANG Hai-rong, WANG Gui-rong. In vitro activities and drug resistance mechanisms of bedaquiline, clofazimine and delamanid against common pathogenic non-tuberculous mycobacteria[J]. Chinese Journal of Antituberculosis, 2020, 42(8): 880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019
[1] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014,18(11):1370-1377. doi: 10.5588/ijtld.14.0120.
doi: 10.5588/ijtld.14.0120 URL pmid: 25299873 |
[2] |
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis, 2016,45:123-134. doi: 10.1016/j.ijid.2016.03.006.
URL pmid: 26976549 |
[3] |
Singh P, Kumari R, Lal R. Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian J Microbiol, 2017,57(4):371-377. doi: 10.1007/s12088-017-0674-0.
URL pmid: 29151636 |
[4] |
Patel RV, Riyaz SD, Park SW. Bedaquiline: a new hope to treat multi-drug resistant tuberculosis. Curr Top Med Chem, 2014,14(16):1866-1874. doi: 10.2174/156802661466614092 9114822.
doi: 10.2174/1568026614666140929114822 URL pmid: 25262806 |
[5] |
Yu X, Gao X, Li C, et al. In Vitro Activities of Bedaquiline and Delamanid against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2019,63(8):e00031-19. doi: 10.1128/AAC.00031-19.
doi: 10.1128/AAC.00031-19 URL pmid: 31138571 |
[6] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17. doi: 10.1128/AAC.00900-17.
URL pmid: 28739779 |
[7] |
Kim DH, Jhun BW, Moon SM, et al. In Vitro Activity of Bedaquiline and Delamanid against Nontuberculous Mycobacteria, Including Macrolide-Resistant Clinical Isolates. Antimicrob Agents Chemother, 2019,63(8):e00665-19. doi: 10.1128/AAC.00665-19.
doi: 10.1128/AAC.00665-19 URL pmid: 31182533 |
[8] |
DeStefano MS, Shoen CM, Cynamon MH. Therapy for Mycobacterium kansasii Infection: Beyond 2018. Front Microbiol, 2018,9:2271. doi: 10.3389/fmicb.2018.02271.
doi: 10.3389/fmicb.2018.02271 URL pmid: 30319580 |
[9] |
Brown-Elliott BA, Philley JV, Griffith DE, et al. In Vitro Susceptibility Testing of Bedaquiline against Mycobacterium avium Complex. Antimicrob Agents Chemother, 2017,61(2):e01798-16. doi: 10.1128/AAC.01798-16.
doi: 10.1128/AAC.01798-16 URL pmid: 27872065 |
[10] |
Li B, Ye M, Guo Q, et al. Determination of MIC Distribution and Mechanisms of Decreased Susceptibility to Bedaquiline among Clinical Isolates of Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00175-18. doi: 10.1128/AAC.00175-18.
doi: 10.1128/AAC.00175-18 URL pmid: 29712658 |
[11] |
Dupont C, Viljoen A, Thomas S, et al. Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and is Effective in Infected Zebrafish. Antimicrob Agents Chemother, 2017,61(11):e01225-17. doi: 10.1128/AAC.01225-17.
doi: 10.1128/AAC.01225-17 URL pmid: 28807917 |
[12] |
Huh HJ, Kim SY, Jhun BW, et al. Recent advances in mole-cular diagnostics and understanding mechanisms of drug resis-tance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019,72:169-182. doi: 10.1016/j.meegid.2018.10.003.
doi: 10.1016/j.meegid.2018.10.003 URL pmid: 30315892 |
[13] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005,307(5707):223-227. doi: 10.1126/science.1106753.
doi: 10.1126/science.1106753 URL pmid: 15591164 |
[14] |
Aguilar-Ayala DA, Cnockaert M, André E, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol, 2017,66(8):1140-1143. doi: 10.1099/jmm.0.000537.
doi: 10.1099/jmm.0.000537 URL pmid: 28749330 |
[15] |
Radhakrishnan A, Kumar N, Wright CC, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem, 2014,289(23):16526-16540. doi: 10.1074/jbc.M113.538959.
doi: 10.1074/jbc.M113.538959 URL pmid: 24737322 |
[16] |
Alexander DC, Vasireddy R, Vasireddy S, et al. Emergence of mmpT5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol, 2017,55(2):574-584. doi: 10.1128/JCM.02087-16.
doi: 10.1128/JCM.02087-16 URL pmid: 27927925 |
[17] |
Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,63(1):e01316-18. doi: 10.1128/AAC.01316-18.
doi: 10.1128/AAC.01316-18 URL pmid: 30323043 |
[18] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018,105:1353-1359. doi: 10.1016/j.biopha.2018.06.023.
doi: 10.1016/j.biopha.2018.06.023 URL pmid: 30021373 |
[19] |
Luo J, Yu X, Jiang G, et al. In Vitro Activity of Clofazimine against Nontuberculous Mycobacteria Isolated in Beijing, China. Antimicrob Agents Chemother, 2018,62(7):e00072-18. doi: 10.1128/AAC.00072-18.
doi: 10.1128/AAC.00072-18 URL pmid: 29760127 |
[20] |
Li G, Pang H, Guo Q, et al. Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria. Int J Antimicrob Agents, 2017,49(3):364-374. doi: 10.1016/j.ijantimicag.2016.10.024.
doi: 10.1016/j.ijantimicag.2016.10.024 URL pmid: 28131606 |
[21] |
van Ingen J, van der Laan T, Dekhuijzen R, et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents, 2010,35(2):169-173. doi: 10.1016/j.ijantimicag.2009.09.023.
doi: 10.1016/j.ijantimicag.2009.09.023 URL pmid: 20006470 |
[22] |
Shen Y, Wang X, Jin J, et al. In Vitro Susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum Isolates to 30 Antibiotics. Biomed Res Int, 2018,2018:4902941. doi: 10.1155/2018/4902941.
doi: 10.1155/2018/4902941 URL pmid: 30687747 |
[23] |
Huang CC, Wu MF, Chen HC, et al. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect, 2018,51(5):636-643. doi: 10.1016/j.jmii.2017.05.001.
doi: 10.1016/j.jmii.2017.05.001 URL pmid: 28705770 |
[24] |
Shen GH, Wu BD, Hu ST, et al. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents, 2010,35(4):400-404. doi: 10.1016/j.ijantimicag.2009.12.008.
doi: 10.1016/j.ijantimicag.2009.12.008 URL pmid: 20138481 |
[25] |
Ismail N, Peters RPH, Ismail NA, et al. Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. Antimicrob Agents Chemother, 2019,63(3):e02141-18. doi: 10.1128/AAC.02141-18.
doi: 10.1128/AAC.02141-18 URL pmid: 30642938 |
[26] |
Chen Y, Chen J, Zhang S, et al. Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother, 2018,62(7):e00544-18. doi: 10.1128/AAC.00544-18.
doi: 10.1128/AAC.00544-18 URL pmid: 29712660 |
[27] |
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015,75(1):91-100. doi: 10.1007/s40265-014-0331-4.
doi: 10.1007/s40265-014-0331-4 URL pmid: 25404020 |
[28] |
Bashiri G, Rehan AM, Greenwood DR, et al. Metabolic engi-neering of cofactor F420 production in Mycobacterium smegmatis. PLoS One, 2010,5(12):e15803. doi: 10.1371/journal.pone.0015803.
doi: 10.1371/journal.pone.0015803 URL pmid: 21209917 |
[29] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006. |
[30] | Brown-Elliott BA, Rubio A, Wallace RJ Jr. In Vitro Susceptibility Testing of a Novel Benzimidazole, SPR719, against Nontuberculous Mycobacteria. Antimicrob Agents Chemo-ther, 2018,62(11):e01503-18. doi: 10.1128/AAC.01503-18. |
[31] |
Cho EH, Huh HJ, Song DJ, et al. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J Infect Chemother, 2018,24(4):315-318. doi: 10.1016/j.jiac.2017.10.022.
doi: 10.1016/j.jiac.2017.10.022 URL pmid: 29223615 |
[32] |
Litvinov V, Makarova M, Galkina K, et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS One, 2018,13(9):e0203108. doi: 10.1371/journal.pone.0203108.
doi: 10.1371/journal.pone.0203108 URL pmid: 30222736 |
[33] |
Heidarieh P, Mirsaeidi M, Hashemzadeh M, et al. In Vitro Antimicrobial Susceptibility of Nontuberculous Mycobacteria in Iran. Microb Drug Resist, 2016,22(2):172-178. doi: 10.1089/mdr.2015.0134.
doi: 10.1089/mdr.2015.0134 URL pmid: 26468990 |
[34] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007,175(4):367-416. doi: 10.1164/rccm.200604-571ST.
doi: 10.1164/rccm.200604-571ST URL pmid: 17277290 |
[35] |
van Ingen J, Kuijper EJ. Drug susceptibility testing of nontuberculous mycobacteria. Future Microbiol, 2014,9(9):1095-1110. doi: 10.2217/fmb.14.60.
doi: 10.2217/fmb.14.60 URL pmid: 25340838 |
[36] |
Jarand J, Davis JP, Cowie RL, et al. Long-term Follow-up of Mycobacterium avium Complex Lung Disease in Patients Treated With Regimens Including Clofazimine and/or Rifampin. Chest, 2016,149(5):1285-1293. doi: 10.1378/chest.15-0543.
doi: 10.1378/chest.15-0543 URL pmid: 26513209 |
[37] |
Nie W, Duan H, Huang H, et al. Species Identification and Clarithromycin Susceptibility Testing of 278 Clinical Nontuberculosis Mycobacteria Isolates. Biomed Res Int, 2015,2015:506598. doi: 10.1155/2015/506598.
doi: 10.1155/2015/506598 URL pmid: 26146620 |
[38] |
Ananta P, Kham-Ngam I, Chetchotisakd P, et al. Analysis of drug-susceptibility patterns and gene sequences associated with clarithromycin and amikacin resistance in serial Mycobacterium abscessus isolates from clinical specimens from Northeast Thailand. PLoS One, 2018,13(11):e0208053. doi: 10.1371/journal.pone.0208053
doi: 10.1371/journal.pone.0208053 URL pmid: 30496270 |
[39] |
Lavollay M, Dubée V, Heym B, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect, 2014,20(5):O297-O300. doi: 10.1111/1469-0691.12405.
doi: 10.1111/1469-0691.12405 URL pmid: 24112243 |
[40] |
Cho EH, Huh HJ, Song DJ, et al. Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens. Diagn Microbiol Infect Dis, 2019,93(2):107-111. doi: 10.1016/j.diagmicrobio.2018.08.008.
doi: 10.1016/j.diagmicrobio.2018.08.008 URL pmid: 30236529 |
[41] |
Zhang Z, Lu J, Song Y, et al. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis, 2018,90(1):31-34. doi: 10.1016/j.diagmicrobio.2017.09.013.
doi: 10.1016/j.diagmicrobio.2017.09.013 URL pmid: 29089153 |
[42] |
Hatakeyama S, Ohama Y, Okazaki M, et al. Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis, 2017,17(1):197. doi: 10.1186/s12879-017-2298-8.
doi: 10.1186/s12879-017-2298-8 URL pmid: 28270102 |
[43] |
Ferro BE, Meletiadis J, Wattenberg M, et al. Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrob Agents Chemother, 2015,60(2):1097-1105. doi: 10.1128/AAC.02615-15.
doi: 10.1128/AAC.02615-15 URL pmid: 26643335 |
[44] |
Yang B, Jhun BW, Moon SM, et al. Clofazimine-Containing Regimen for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrob Agents Chemother, 2017,61(6):e02052-16. doi: 10.1128/AAC.02052-16.
doi: 10.1128/AAC.02052-16 URL pmid: 28348153 |
[1] | 李爱芳, 崔晓利, 康磊, 雷静, 党丽云, 杨翰. 荧光PCR探针熔解曲线法检测结核分枝杆菌耐药性的价值[J]. 中国防痨杂志, 2020, 42(9): 998-1001. |
[2] | 张凯, 沈小兵, 陶立峰, 韦芬, 陈保文, 仇晶晶, 陈伟, 卢锦标, 朱银猛, 程兴, 钟再新, 赵爱华, 蒲江. 重组结核杆菌融合蛋白(EC)产品质量标准的建立[J]. 中国防痨杂志, 2020, 42(8): 814-820. |
[3] | 盛杰, 朱洋, 地里下提·阿不力孜, 唐伟, 古甫丁, 宋兴华. 表型与分子药物敏感性试验对术后耐药骨关节结核患者化疗的指导与效果分析[J]. 中国防痨杂志, 2020, 42(8): 838-844. |
[4] | 谢莉, 高静韬, 马丽萍, 张立群, 孔忠顺, 吴晓光, 刘荣梅, 陈红梅, 宋艳华, 李雪莲, 黄麦玲, 李强, 吕子征, 刘宇红, 高孟秋. 含贝达喹啉方案治疗耐多药肺结核对患者心电图QT间期的影响[J]. 中国防痨杂志, 2020, 42(7): 687-694. |
[5] | 宋怡蒙, 李远春, 贺文从, 何萍, 包晶晶, 刘春法, 刘东鑫, 王鑫洋, 赵雁林, 李燕明. 荧光PCR探针熔解曲线技术检测MTB耐药性的成本分析[J]. 中国防痨杂志, 2020, 42(7): 712-717. |
[6] | 包训迪, 江跃, 梁锁, 程红燕, 夏广秀, 王超, 叶倩, 王舒, 王庆. 安徽省非结核分枝杆菌临床分离率及人群分布和耐药性分析[J]. 中国防痨杂志, 2020, 42(7): 718-724. |
[7] | 马进宝, 任斐, 曾令城, 陈明伟. 2015—2019年西安市680例耐多药结核病患者耐药情况分析[J]. 中国防痨杂志, 2020, 42(6): 609-613. |
[8] | 付亮, 邓国防. 实验室检测技术在肺结核活动性判断中的应用进展[J]. 中国防痨杂志, 2020, 42(6): 626-629. |
[9] | 方雪娥, 陈丹萍, 汤玲玲, 范琳, 陈薇, 季海明, 毛燕君. 个案管理模式在耐多药肺结核患者服用贝达喹啉过程中的应用效果[J]. 中国防痨杂志, 2020, 42(6): 641-644. |
[10] | 首都医科大学附属北京胸科医院, 中国防痨协会临床试验专业分会, 《中国防痨杂志》编辑委员会. 氯法齐明治疗结核病的临床应用指南[J]. 中国防痨杂志, 2020, 42(5): 409-417. |
[11] | 张静, 陈曦, 王彬, 付雷, 陆宇, 陈效友. 改良单叠氮丙啶-荧光定量PCR法的建立及其检测抗结核药物活性的价值[J]. 中国防痨杂志, 2020, 42(5): 472-480. |
[12] | 赵皎洁,付雷,王彬,张蕾,胡明豪,陆宇. 抗结核药物体外药代动力学/药效学研究模型的建立及应用[J]. 中国防痨杂志, 2020, 42(4): 372-379. |
[13] | 杨翰,杨静芬,伍浩,崔晓利,党丽云. 微孔板法在一线抗结核药物敏感性试验中的应用价值[J]. 中国防痨杂志, 2020, 42(4): 380-384. |
[14] | 向海滨,梁求真,李新霞,宋兴华. 巨噬细胞的抗结核纳米递药系统的应用进展[J]. 中国防痨杂志, 2020, 42(4): 398-403. |
[15] | 简奕娈,吴龙章,古卓云. 18例五官非结核分枝杆菌病患者的临床特征及疗效分析[J]. 中国防痨杂志, 2020, 42(3): 255-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||