中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (3): 282-285.doi: 10.3969/j.issn.1000-6621.2020.03.019
收稿日期:
2019-12-06
出版日期:
2020-03-10
发布日期:
2020-03-18
通信作者:
赵俊伟
E-mail:edward35@126.com
基金资助:
Received:
2019-12-06
Online:
2020-03-10
Published:
2020-03-18
Contact:
Jun-wei ZHAO
E-mail:edward35@126.com
摘要:
结核病仍然是严重危害人类健康的慢性传染性疾病,外泌体在结核病的发生发展中扮演了重要角色,非编码RNA与结核病的诊断近年也备受关注。作者阐述了外泌体与结核分枝杆菌感染、外泌体非编码RNA与结核病诊断的最新进展,旨在从外泌体非编码RNA的角度为结核病早期诊断、疗效监测、预后判断的研究提供新的思路。
高书慧,赵俊伟. 外泌体非编码RNA作为结核病诊断潜在生物标志物的研究进展[J]. 中国防痨杂志, 2020, 42(3): 282-285. doi: 10.3969/j.issn.1000-6621.2020.03.019
GAO Shu-hui,ZHAO Jun-wei. Research progress of exosomal non-coding RNA as potential biomarkers of tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(3): 282-285. doi: 10.3969/j.issn.1000-6621.2020.03.019
[1] | Global tuberculosis report 2019. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] | Cui JY, Liang HW, Pan XL , et al. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS One, 2017,12(9):e0184113. |
[3] | Liu F, Chen J, Wang P , et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun, 2018,9(1):4295. |
[4] | Yang X, Yang J, Wang J , et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016,6:38963. |
[5] | Huang S, Huang Z, Luo Q , et al. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. Biomed Res Int, 2018,2018:9529072. |
[6] | He J, Ou Q, Liu C , et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. Tuberculosis (Edinb), 2017,107:73-79. |
[7] | Alipoor SD, Mortaz E, Garssen J , et al. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm, 2016,2016:5628404. |
[8] | Zhang W, Jiang X, Bao J , et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol, 2018,9:90. |
[9] | Wang J, Yao Y, Chen X , et al. Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomed Pharmacother, 2018,108:1451-1459. |
[10] | Wang Y, Liu J, Ma J , et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer, 2019,18(1):116. |
[11] | Bellin G, Gardin C, Ferroni L , et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells, 2019,8(2):166. |
[12] | 王鑫洋, 付英梅, 赵雁林 , 等. 结核分枝杆菌外泌体的研究进展. 中国防痨杂志, 2018,40(10):1129-1133. |
[13] | Giri PK, Kruh NA, Dobos KM , et al. Proteomic analysis identifies highly antigenic proteins in exosomes from M.tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics, 2010,10(17):3190-3202. |
[14] | Hadifar S, Fateh A, Yousefi MH , et al. Exosomes in tuberculosis: Still terra incognita? J Cell Physiol, 2019,234(3):2104-2111. |
[15] | Hosseini HM, Fooladi AA, Nourani MR , et al. The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets, 2013,12(1):29-37. |
[16] | Schorey JS, Bhatnagar S . Exosome function: from tumor immunology to pathogen biology. Traffic, 2008,9(6):871-881. |
[17] | Singh PP, LeMaire C, Tan JC , et al. Exosomes released from M.tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One, 2011,6(4):e18564. |
[18] | Cheng Y, Schorey JS . Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep, 2019, 20(3). pii: e46613. |
[19] | 吕翎娜, 贾红彦, 廖莎 , 等. 结核分枝杆菌膜囊泡的分离及其对细胞因子释放的作用. 中国防痨杂志, 2017,39(8):799-804. |
[20] | Jurkoshek KS, Wang Y, Athman JJ , et al. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Front Cell Dev Biol, 2016,4:125. |
[21] | Prados-Rosales R, Carreño LJ, Batista-Gonzalez A , et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio, 2014,5(5):e01921-14. |
[22] | Dicks KV, Stout JE . Molecular Diagnostics for Mycobacterium tuberculosis Infection. Annu Rev Med, 2019,70:77-90. |
[23] | 吴海燕, 叶志坚, 王霞芳 , 等. GeneXpert MTB/RIF技术诊断肺结核及利福平耐药性的价值. 结核病与肺部健康杂志, 2019,8(3):172-177. |
[24] | 陆宇, 朱莉贞, 段连山 , 等. mRNA作为结核分支杆菌活菌检测标志的可行性研究. 中华结核和呼吸杂志, 2003,26(7):419-423. |
[25] | Fan L, Li D, Zhang S , et al. Parallel tests using culture, Xpert MTB/RIF, and SAT-TB in sputum plus bronchial alveolar lavage fluid significantly increase diagnostic performance of smear-negative pulmonary tuberculosis. Front Microbiol, 2018,9:1107. |
[26] | Wu LS, Lee SW, Huang KY , et al. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection. Biomed Res Int, 2014,2014:895179. |
[27] | Li X, Huang S, Yu T , et al. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis‐infected macrophages by targeting TRAF6. J Cell Mol Med, 2019,23(8):5642-5653. |
[28] | Shi G, Mao G, Xie K , et al. MiR-1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages partly via TLR4. J Cell Biochem, 2018,119(9):7449-7457. |
[29] | Zhang G, Liu X, Wang W , et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle, 2016,15(18):2527-2538. |
[30] | Lin Y, Zhang Y, Yu H , et al. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol Immunol, 2019,112:103-114. |
[31] | Yan H, Xu R, Zhang X , et al. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. Infect Drug Resist, 2018,11:945-959. |
[32] | Li M, Cui J, Niu W , et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun, 2019,509(3):803-809. |
[33] | Huang ZK, Yao FY, Xu JQ , et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018,45(3):1230-1240. |
[34] | Huang Z, Su R, Qing C , et al. Plasma Circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Front Microbiol, 2018,9:2010. |
[35] | Qian Z, Liu H, Li M , et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018,27:18-26. |
[36] | Yi Z, Gao K, Li R , et al. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med, 2018,22(9):4076-4084. |
[37] | Fu Y, Wang J, Qiao J , et al. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med, 2019,23(3):1917-1925. |
[38] | Valadi H, Ekström K, Bossios A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6):654-659. |
[39] | Wu J, Gu J, Shen L , et al. Exosomal MicroRNA-155 inhibits enterovirus A71 infection by targeting PICALM. Int J Biol Sci, 2019,15(13):2925-2935. |
[40] | Li S, Li S, Wu S , et al. Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int, 2019,2019:2103943. |
[41] | Li DL, Zou WH, Deng SQ , et al. Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. Int J Biol Sci, 2019, 20(21). pii: E5506. |
[42] | Mortaz E, Alipoor SD, Tabarsi P , et al. The analysis of exosomal micro-RNAs in peripheral blood mononuclear cell-derived macrophages after infection with bacillus Calmette-Guerin by RNA sequencing. Int J Mycobacteriol, 2016,5 Suppl 1: S184-185. |
[43] | Alipoor SD, Mortaz E, Tabarsi P , et al. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages. J Transl Med, 2017,15(1):105. |
[44] | Singh PP, Li L, Schorey JS . Exosomal RNA from Mycobacterium tuberculosis-infected cells is functional in recipient macrophages. Traffic, 2015,16(6):555-571. |
[45] | Wang Y, Xu YM, Zou YQ , et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore), 2017,96(44):e8361. |
[46] | Zhang D, Yi Z, Fu Y . Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem, 2019,120(4):5889-5896. |
[47] | Alipoor SD, Tabarsi P, Varahram M , et al. Serum exosomal miRNAs are associated with active pulmonary tuberculosis. Dis Markers, 2019,2019:1907426. |
[48] | Hu X, Liao S, Bai H , et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019,40:564-573. |
[49] | Lv L, Li C, Zhang X , et al. RNA profiling analysis of the serum exosomes derived from patients with active and latent Mycobacterium tuberculosis infection. Front Microbiol, 2017,8:1051. |
[50] | Lyu L, Zhang X, Li C , et al. Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front Microbiol, 2019,10:1174. |
[51] | 高谦, 梅建, 谭卫国 . 实事求是抓住核心脚踏实地精准防控. 中国防痨杂志, 2019,41(10):1074-1079. |
[1] | 刘晓莉, 雷丽梅, 郭周莉, 黄殷, 徐静, 赵霞, 王燕, 付莉. 结核病患者产生病耻感与领悟社会支持的相关性研究[J]. 中国防痨杂志, 2020, 42(9): 1002-1008. |
[2] | 中国防痨协会学术工作委员会《中国防痨杂志》编辑委员会. 抗结核药品固定剂量复合制剂的临床使用专家共识[J]. 中国防痨杂志, 2020, 42(9): 885-893. |
[3] | 靳鸿建. 我国县级结核病防治服务体系建设及防治工作亟需加强——一位老防痨工作者的意见和建议[J]. 中国防痨杂志, 2020, 42(9): 896-902. |
[4] | 张灿有, 夏辉, 成君. Ⅱ级生物安全柜在结核病实验室中的检测及报告要求[J]. 中国防痨杂志, 2020, 42(9): 903-909. |
[5] | 周林, 刘二勇, 孟庆琳, 陈明亭, 周新华, 高微微, 林明贵, 谢汝明. 《WS 288—2017 肺结核诊断》标准实施后肺结核诊断质量评估分析[J]. 中国防痨杂志, 2020, 42(9): 910-915. |
[6] | 刘二勇, 王前, 周林, 张国钦, 张修磊, 马永成, 杨枢敏, 王毳, 孟庆琳, 陈明亭, 林明贵, 屠德华. 我国部分地区病原学检测阴性肺结核诊断质量现状分析[J]. 中国防痨杂志, 2020, 42(9): 916-920. |
[7] | 孟庆琳, 李进岚, 林定文, 马永成, 侯双翼, 刘年强, 周林. 结核病防治从业人员对新的结核病标准相关知识知晓情况调查分析[J]. 中国防痨杂志, 2020, 42(9): 921-925. |
[8] | 王前, 周林, 刘二勇, 赵雁林, 李涛, 陈明亭, 杨丽佳, 王嘉. 我国县级结核病定点医疗机构结核病诊断能力现况调查研究[J]. 中国防痨杂志, 2020, 42(9): 926-930. |
[9] | 李婷, 何金戈, 苏茜, 李京, 李运葵, 高文凤, 高媛, 杨文. 结核菌素试验在四川省布拖县HIV感染/AIDS患者中筛查结核感染的价值[J]. 中国防痨杂志, 2020, 42(9): 931-936. |
[10] | 李运葵, 何金戈, 苏茜, 李婷, 李京, 高文凤, 杨文, 毛光玉. 结核病症状筛查在四川省布拖县HIV感染/AIDS患者中发现结核病患者的价值[J]. 中国防痨杂志, 2020, 42(9): 937-941. |
[11] | 苏茜, 夏勇, 逯嘉, 王丹霞, 何金戈. 2009—2018年四川省0~14 岁儿童肺结核流行特征分析[J]. 中国防痨杂志, 2020, 42(9): 942-947. |
[12] | 邓亚丽, 张天华, 刘卫平, 张宏伟, 马煜, 李鹏. 2014—2018年陕西省肺结核发病的时空聚集性分析[J]. 中国防痨杂志, 2020, 42(9): 948-955. |
[13] | 董晓, 赵珍, 刘年强, 王森路, 崔燕. 2009—2017年新疆维吾尔自治区老年肺结核发现特征分析[J]. 中国防痨杂志, 2020, 42(9): 956-961. |
[14] | 马廷龙, 韩毅, 程序, 刘志东. 超声抗结核药品电导入联合化疗对胸壁结核的疗效观察[J]. 中国防痨杂志, 2020, 42(9): 968-972. |
[15] | 南海, 张芸, 杨新婷, 段鸿飞. GeneXpert MTB/RIF对骨关节结核诊断价值的Meta分析[J]. 中国防痨杂志, 2020, 42(9): 973-980. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||