中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (9): 970-974.doi: 10.3969/j.issn.1000-6621.2021.09.019
收稿日期:
2021-05-14
出版日期:
2021-09-10
发布日期:
2021-09-07
通信作者:
牛红霞
E-mail:niuhx@lzu.edu.cn
基金资助:
CAO Qian-qian, ZHU Bing-dong, NIU Hong-xia()
Received:
2021-05-14
Online:
2021-09-10
Published:
2021-09-07
Contact:
NIU Hong-xia
E-mail:niuhx@lzu.edu.cn
摘要:
卡介苗是唯一应用于临床的结核病疫苗,但是其对成人结核病的保护效果仍存在不确定性。重组蛋白亚单位疫苗可提供长期的免疫保护效果,且成分明确、安全性好,因而具有较好的应用开发前景。作者对结核病重组蛋白亚单位疫苗的组分(结核分枝杆菌保护性抗原和免疫佐剂)、临床研究现况、应用策略及研究所面临的挑战等方面的进展进行了综述。
曹倩倩, 祝秉东, 牛红霞. 结核病重组蛋白亚单位疫苗研究进展[J]. 中国防痨杂志, 2021, 43(9): 970-974. doi: 10.3969/j.issn.1000-6621.2021.09.019
CAO Qian-qian, ZHU Bing-dong, NIU Hong-xia. Research progress on recombinant protein subunit vaccine of tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 970-974. doi: 10.3969/j.issn.1000-6621.2021.09.019
[1] |
Tran V, Liu J, Behr MA. BCG Vaccines. Microbiol Spectr, 2014, 2(1): MGM2-0028-2013. doi: 10.1128/microbiolspec.MGM2-0028-2013.
doi: 10.1128/microbiolspec.MGM2-0028-2013 |
[2] |
Colditz GA, Brewer TF, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA, 1994, 271(9):698-702.
doi: 10.1001/jama.1994.03510330076038 URL |
[3] |
Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, 367(9517):1173-1180. doi: 10.1016/s0140-6736(06)68507-3.
doi: 10.1016/s0140-6736(06)68507-3 URL |
[4] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[5] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3):e28-e37. doi: 10.1016/S1473-3099(19)30625-5.
doi: 10.1016/S1473-3099(19)30625-5 URL |
[6] |
Bai C, He J, Niu H, et al. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. Tuberculosis (Edinb), 2018, 110:104-111. doi: 10.1016/j.tube.2018.04.006.
doi: 10.1016/j.tube.2018.04.006 URL |
[7] |
Kalscheuer R, Palacios A, Anso I, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J, 2019, 476(14):1995-2016. doi: 10.1042/BCJ20190324.
doi: 10.1042/BCJ20190324 pmid: 31320388 |
[8] |
Hunter RL, Hwang SA, Jagannath C, et al. Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persis-tence. Tuberculosis (Edinb), 2016, 101S:S2-S8. doi: 10.1016/j.tube.2016.09.023.
doi: 10.1016/j.tube.2016.09.023 |
[9] |
Correia-Neves M, Sundling C, Cooper A, et al. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol, 2019, 10:1968. doi: 10.3389/fimmu.2019.01968.
doi: 10.3389/fimmu.2019.01968 pmid: 31572351 |
[10] |
Wolfe LM, Mahaffey SB, Kruh NA, et al. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J Proteome Res, 2010, 9(11):5816-5826. doi: 10.1021/pr1005873.
doi: 10.1021/pr1005873 pmid: 20825248 |
[11] |
Brennan PJ. Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. Rev Infect Dis, 1989, 11 Suppl 2: S420-S430. doi: 10.1093/clinids/11.supplement_2.s420.
doi: 10.1093/clinids/11.supplement_2.s420 |
[12] |
Parra M, Pickett T, Delogu G, et al. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect Immun, 2004, 72(12):6799-6805. doi: 10.1128/IAI.72.12.6799-6805.2004.
doi: 10.1128/IAI.72.12.6799-6805.2004 URL |
[13] |
Verwaerde C, Debrie AS, Dombu C, et al. HBHA vaccination may require both Th1 and Th17 immune responses to protect mice against tuberculosis. Vaccine, 2014, 32(47):6240-6250. doi: 10.1016/j.vaccine.2014.09.024.
doi: 10.1016/j.vaccine.2014.09.024 pmid: 25252198 |
[14] |
Alteri CJ, Xicohténcatl-Cortes J, Hess S, et al. Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A, 2007, 104(12):5145-5150. doi: 10.1073/pnas.0602304104.
doi: 10.1073/pnas.0602304104 URL |
[15] |
Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr, 2017, 5(3). doi: 10.1128/microbiolspec.TBTB2-0001-2015.
doi: 10.1128/microbiolspec.TBTB2-0001-2015 |
[16] |
Andersen P. The T cell response to secreted antigens of Mycobacterium tuberculosis. Immunobiology, 1994, 191(4/5):537-547. doi: 10.1016/s0171-2985(11)80460-2.
doi: 10.1016/s0171-2985(11)80460-2 URL |
[17] |
Kuo CJ, Ptak CP, Hsieh CL, et al. Elastin, a novel extracellular matrix protein adhering to mycobacterial antigen 85 complex. J Biol Chem, 2013, 288(6):3886-3896. doi: 10.1074/jbc.M112.415679.
doi: 10.1074/jbc.M112.415679 URL |
[18] |
Kamath AB, Woodworth J, Xiong X, et al. Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J Exp Med, 2004, 200(11):1479-1489. doi: 10.1084/jem.20041690.
doi: 10.1084/jem.20041690 URL |
[19] |
Skjøt RL, Brock I, Arend SM, et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun, 2002, 70(10):5446-5453. doi: 10.1128/IAI.70.10.5446-5453.2002.
doi: 10.1128/IAI.70.10.5446-5453.2002 URL |
[20] |
Bekker LG, Dintwe O, Fiore-Gartland A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine, 2020, 21:100313. doi: 10.1016/j.eclinm.2020.100313.
doi: 10.1016/j.eclinm.2020.100313 URL |
[21] | 刘忠泉, 张宗德, 邢爱英, 等. 结核分枝杆菌休眠复苏期与活跃期的差异表达基因分析. 中华结核和呼吸杂志, 2008, 31(6):442-447. |
[22] |
Xin Q, Niu H, Li Z, et al. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS one, 2013, 8(8):e72745. doi: 10.1371/journal.pone.0072745.
doi: 10.1371/journal.pone.0072745 URL |
[23] |
Li F, Kang H, Li J, et al. Subunit vaccines consisting of antigens from dormant and replicating bacteria show promising therapeutic effect against Mycobacterium Bovis BCG latent infection. Scand J Immunol, 2017, 85(6):425-432. doi: 10.1111/sji.12556.
doi: 10.1111/sji.12556 pmid: 28426145 |
[24] |
Pheiffer C, Betts J, Lukey P, et al. Protein expression in Mycobacterium tuberculosis differs with growth stage and strain type. Clin Chem Lab Med, 2002, 40(9):869-875. doi: 10.1515/CCLM.2002.154.
doi: 10.1515/CCLM.2002.154 pmid: 12435102 |
[25] |
Andersen P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol, 2007, 15(1):7-13. doi: 10.1016/j.tim.2006.11.008.
doi: 10.1016/j.tim.2006.11.008 pmid: 17141504 |
[26] |
Niu H, Hu L, Li Q, et al. Construction and evaluation of a multistage Mycobacterium tuberculosis subunit vaccine candidate Mtb10.4-HspX. Vaccine, 2011, 29(51):9451-9458. doi: 10.1016/j.vaccine.2011.10.032.
doi: 10.1016/j.vaccine.2011.10.032 URL |
[27] |
Niu H, Peng J, Bai C, et al. Multi-Stage Tuberculosis Subunit Vaccine Candidate LT69 Provides High Protection against Mycobacterium tuberculosis Infection in Mice. PLoS One, 2015, 10(6):e0130641. doi: 10.1371/journal.pone.0130641.
doi: 10.1371/journal.pone.0130641 URL |
[28] |
Liu X, Peng J, Hu L, et al. A multistage Mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother, 2016, 12(7):1670-1677. doi: 10.1080/21645515.2016.1141159.
doi: 10.1080/21645515.2016.1141159 |
[29] |
Behr MA, Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, 284(5419):1520-1523. doi: 10.1126/science.284.5419.1520.
doi: 10.1126/science.284.5419.1520 pmid: 10348738 |
[30] |
Abdallah AM, Behr MA. Evolution and Strain Variation in BCG. Adv Exp Med Biol, 2017, 1019:155-169. doi: 10.1007/978-3-319-64371-7_8.
doi: 10.1007/978-3-319-64371-7_8 pmid: 29116634 |
[31] |
Zom GG, Khan S, Filippov DV, et al. TLR Ligand-peptide conjugate vaccines: toward clinical application. Adv Immunol, 2012, 114:177-201. doi: 10.1016/B978-0-12-396548-6.00007-X.
doi: 10.1016/B978-0-12-396548-6.00007-X |
[32] |
Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines (Basel), 2014, 2(2):323-353. doi: 10.3390/vaccines2020323.
doi: 10.3390/vaccines2020323 |
[33] |
Olafsdottir TA, Lingnau K, Nagy E, et al. IC31, a two-component novel adjuvant mixed with a conjugate vaccine enhances protective immunity against pneumococcal disease in neonatal mice. Scand J Immunol, 2009, 69(3):194-202. doi: 10.1111/j.1365-3083.2008.02225.x.
doi: 10.1111/j.1365-3083.2008.02225.x pmid: 19281531 |
[34] |
Fritz JH, Brunner S, Birnstiel ML, et al. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine, 2004, 22(25/26):3274-3284. doi: 10.1016/j.vaccine.2004.03.007.
doi: 10.1016/j.vaccine.2004.03.007 URL |
[35] |
Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines, 2017, 16(1):55-63. doi: 10.1080/14760584.2016.1213632.
doi: 10.1080/14760584.2016.1213632 pmid: 27448771 |
[36] |
Baldridge JR, McGowan P, Evans JT, et al. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther, 2004, 4(7):1129-1138. doi: 10.1517/14712598.4.7.1129.
doi: 10.1517/14712598.4.7.1129 pmid: 15268679 |
[37] |
Coler RN, Bertholet S, Moutaftsi M, et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One, 2011, 6(1):e16333. doi: 10.1371/journal.pone.0016333.
doi: 10.1371/journal.pone.0016333 URL |
[38] |
Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines, 2011, 10(4):499-511. doi: 10.1586/erv.10.174.
doi: 10.1586/erv.10.174 URL |
[39] |
Liu X, Da Z, Wang Y, et al. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine, 2016, 34(11):1370-1378. doi: 10.1016/j.vaccine.2016.01.049.
doi: 10.1016/j.vaccine.2016.01.049 URL |
[40] | 何娟娟, 胡丽娜, 刘勋, 等. LT70-DPC结核亚单位疫苗安全性的初步评价. 中国生物制品学杂志, 2017, 30(1):1-4. |
[41] |
Van Dis E, Sogi KM, Rae CS, et al. STING-Activating Adjuvants Elicit a Th17 Immune Response and Protect against Mycobacterium tuberculosis Infection. Cell Rep, 2018, 23(5):1435-1447. doi: 10.1016/j.celrep.2018.04.003.
doi: 10.1016/j.celrep.2018.04.003 URL |
[42] |
卢锦标, 赵爱华, 王国治, 等. 结核病新疫苗临床研究进展. 中华结核和呼吸杂志, 2019, 42(10):783-790. doi: 10.3760/cma.j.issn.1001-0939.2019.10.015.
doi: 10.3760/cma.j.issn.1001-0939.2019.10.015 |
[43] |
Day TA, Penn-Nicholson A, Luabeya AKK, et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir Med, 2021, 9(4):373-386. doi: 10.1016/S2213-2600(20)30319-2.
doi: 10.1016/S2213-2600(20)30319-2 URL |
[44] |
Tkachuk AP, Bykonia EN, Popova LI, et al. Safety and Immunogenicity of the GamTBvac, the Recombinant Subunit Tuberculosis Vaccine Candidate: A Phase Ⅱ, Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study. Vaccines (Basel), 2020, 8(4):652. doi: 10.3390/vaccines8040652.
doi: 10.3390/vaccines8040652 |
[45] |
Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am J Respir Crit Care Med, 2019, 199(2):220-231. doi: 10.1164/rccm.201802-0366OC.
doi: 10.1164/rccm.201802-0366OC URL |
[46] |
Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018, 379(17):1621-1634. doi: 10.1056/NEJMoa1803484.
doi: 10.1056/NEJMoa1803484 URL |
[47] |
Ullah I, Bibi S, Ul Haq I, et al. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Front Immunol, 2020, 11:1806. doi: 10.3389/fimmu.2020.01806.
doi: 10.3389/fimmu.2020.01806 URL |
[48] |
Tait DR, Hatherill M, Van Der Meeren O, et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019, 381(25):2429-2439. doi: 10.1056/NEJMoa1909953.
doi: 10.1056/NEJMoa1909953 URL |
[49] |
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine, 2014, 32(51):6911-6918. doi: 10.1016/j.vaccine.2014.10.041.
doi: 10.1016/j.vaccine.2014.10.041 URL |
[50] |
Sallusto F, Lanzavecchia A, Araki K, et al. From vaccines to memory and back. Immunity, 2010, 33(4):451-463. doi: 10.1016/j.immuni.2010.10.008.
doi: 10.1016/j.immuni.2010.10.008 URL |
[51] |
Billeskov R, Elvang TT, Andersen PL, et al. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS One, 2012, 7(6):e39909. doi: 10.1371/journal.pone.0039909.
doi: 10.1371/journal.pone.0039909 URL |
[52] |
Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011, 17(2):189-194. doi: 10.1038/nm.2285.
doi: 10.1038/nm.2285 pmid: 21258338 |
[53] |
Lin PL, Dietrich J, Tan E, et al. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest, 2012, 122(1):303-314. doi: 10.1172/JCI46252.
doi: 10.1172/JCI46252 URL |
[54] |
Sharpe S, White A, Sarfas C, et al. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis (Edinb), 2016, 101:174-190. doi: 10.1016/j.tube.2016.09.004.
doi: 10.1016/j.tube.2016.09.004 URL |
[55] |
Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788):95-102. doi: 10.1038/s41586-019-1817-8.
doi: 10.1038/s41586-019-1817-8 URL |
[56] |
Barclay WR, Anacker RL, Brehmer W, et al. Aerosol-Induced Tuberculosis in Subhuman Primates and the Course of the Disease After Intravenous BCG Vaccination. Infect Immun, 1970, 2(5):574-582. doi: 10.1128/iai.2.5.574-582.1970.
doi: 10.1128/iai.2.5.574-582.1970 pmid: 16557880 |
[57] |
Luo Y, Jiang W, Da Z, et al. Subunit vaccine candidate AMM down-regulated the regulatory T cells and enhanced the protective immunity of BCG on a suitable schedule. Scand J Immunol, 2012, 75(3):293-300. doi: 10.1111/j.1365-3083.2011.02666.x.
doi: 10.1111/j.1365-3083.2011.02666.x pmid: 22117839 |
[58] |
Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res, 2018, 147(5):456-463. doi: 10.4103/ijmr.IJMR_554_18.
doi: 10.4103/ijmr.IJMR_554_18 URL |
[59] |
Jacobs AJ, Mongkolsapaya J, Screaton GR, et al. Antibodies and tuberculosis. Tuberculosis (Edinb), 2016, 101:102-113. doi: 10.1016/j.tube.2016.08.001.
doi: 10.1016/j.tube.2016.08.001 URL |
[1] | 祁雪婷, 陆宇, 陈效友. 抗结核新药药效学特点及相互作用研究[J]. 中国防痨杂志, 2021, 43(9): 965-969. |
[2] | 王亚翠, 孙琳, 申阿东. Xpert MTB/RIF Ultra在儿童结核病诊断中的应用进展[J]. 中国防痨杂志, 2021, 43(8): 843-846. |
[3] | 姚蓉, 陆宇. 抗结核药物早期杀菌活性研究及进展[J]. 中国防痨杂志, 2021, 43(7): 724-728. |
[4] | 郑璐瑶, 陆宇, 陈效友. 非结核分枝杆菌肺病治疗药物研发的现状与挑战[J]. 中国防痨杂志, 2021, 43(7): 729-734. |
[5] | 王乐乐, 郭建琼, 杨松, 唐神结. 结核性脑膜炎诊断方法研究进展[J]. 中国防痨杂志, 2021, 43(7): 735-740. |
[6] | 洪飘如, 蒋慧芳, 陶叠宏, 苏传勇, 郭淑萍, 吴海英, 蒋玉霞, 叶萤燕. 大颗粒淋巴细胞白血病并发鸟分枝杆菌脑膜炎一例并文献复习[J]. 中国防痨杂志, 2021, 43(6): 631-635. |
[7] | 刘海婷, 陆宇. 抗结核药物组合药效筛选研究进展[J]. 中国防痨杂志, 2021, 43(4): 404-408. |
[8] | 刘鑫, 郭乐, 仵倩红. 抗结核药品导致严重骨髓抑制一例并文献复习[J]. 中国防痨杂志, 2021, 43(4): 413-418. |
[9] | 中国防痨协会. 结核病领域研究进展(2020年度)[J]. 中国防痨杂志, 2021, 43(1): 6-11. |
[10] | 李果, 庞先琼, 徐华, 敬明燕, 范庞双, 陈绍平. 潜伏性结核感染诊治进展[J]. 中国防痨杂志, 2021, 43(1): 91-95. |
[11] | 赵爱华, 康万里, 王国治, 高正伦, 都伟欣, 卢锦标, 沈小兵, 苏城, 徐苗, 郑素华. 重组结核分枝杆菌11kDa蛋白鉴别潜伏性结核感染与卡介苗接种的研究[J]. 中国防痨杂志, 2020, 42(8): 821-825. |
[12] | 孙晴, 黄海荣, 王桂荣. 贝达喹啉、氯法齐明和德拉马尼对常见致病性非结核分枝杆菌体外抑菌活性及耐药机制的研究进展[J]. 中国防痨杂志, 2020, 42(8): 880-884. |
[13] | 付亮, 邓国防. 实验室检测技术在肺结核活动性判断中的应用进展[J]. 中国防痨杂志, 2020, 42(6): 626-629. |
[14] | 向海滨,梁求真,李新霞,宋兴华. 巨噬细胞的抗结核纳米递药系统的应用进展[J]. 中国防痨杂志, 2020, 42(4): 398-403. |
[15] | 王雪迪,江锋,代倩兰,王京,王冬梅. 中西医联合与单纯西医治疗结核病所致药物性肝损伤的对比分析(2000—2019年文献复习)[J]. 中国防痨杂志, 2020, 42(2): 126-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||