中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (1): 96-99.doi: 10.3969/j.issn.1000-6621.2021.01.018
收稿日期:
2020-09-14
出版日期:
2021-01-10
发布日期:
2021-01-12
通信作者:
初乃惠
E-mail:dongchu1994@sina.com
基金资助:
Received:
2020-09-14
Online:
2021-01-10
Published:
2021-01-12
Contact:
CHU Nai-hui
E-mail:dongchu1994@sina.com
摘要:
评价抗结核药品疗效的方法,需要其指标能准确预测灭菌效果和杀菌效果。传统抗结核药品临床试验Ⅱ期临床试验采用早期杀菌活性和痰分枝杆菌培养阴转预测杀菌效果和灭菌效果,Ⅲ期临床试验用已治愈且无复发来评价疗效。新的研究显示,痰培养阴转速度、CT和正电子发射体层摄影(positron emission tomography,PET)-CT病灶定量分析和GeneXpert MTB/RIF的循环阈值在预测抗结核药品疗效方面有一定价值。
段鸿飞, 初乃惠. 抗结核药品临床试验疗效评价指标的研究进展[J]. 中国防痨杂志, 2021, 43(1): 96-99. doi: 10.3969/j.issn.1000-6621.2021.01.018
DUAN Hong-fei, CHU Nai-hui. Research progress of clinical endpoints in clinical trials of novel antituberculosis agents[J]. Chinese Journal of Antituberculosis, 2021, 43(1): 96-99. doi: 10.3969/j.issn.1000-6621.2021.01.018
[1] |
Wallis RS, Kim P, Cole S, et al. Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infect Dis, 2013,13(4):362-372. doi: 10.1016/S1473-3099(13)70034-3.
doi: 10.1016/S1473-3099(13)70034-3 URL |
[2] |
Wallis RS, Pai M, Menzies D, et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, 2010,375(9729):1920-1937. doi: 10.1016/S0140-6736(10)60359-5.
doi: 10.1016/S0140-6736(10)60359-5 URL pmid: 20488517 |
[3] |
Wallis RS, Maeurer M, Mwaba P, et al. Tuberculosis-advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infect Dis, 2016,16(4):e34-46. doi: 10.1016/S1473-3099(16)00070-0.
doi: 10.1016/S1473-3099(16)00070-0 URL pmid: 27036358 |
[4] |
Perrin FMR, Lipman MCI, McHugh TD, et al. Biomarkers of treatment response in clinical trials of novel antituberculosis agents. Lancet Infect Dis, 2007,7(7):481-490. doi: 10.1016/S1473-3099(07)70112-3.
doi: 10.1016/S1473-3099(07)70112-3 URL |
[5] |
Jindani A, Aber VR, Edwards EA, et al. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis, 1980,121(6):939-949. doi: 10.1164/arrd.1980.121.6.939.
doi: 10.1164/arrd.1980.121.6.939 URL pmid: 6774638 |
[6] |
Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008,52(8):2831-2835. doi: 10.1128/AAC.01204-07.
doi: 10.1128/AAC.01204-07 URL pmid: 18505852 |
[7] |
Mitchison DA. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am Rev Respir Dis, 1993,147(4), 1062-1063. doi: 10.1164/ajrccm/147.4.1062.
doi: 10.1164/ajrccm/147.4.1062 URL pmid: 8466107 |
[8] |
Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med, 2014,371(17):1577-1587. doi: 10.1056/NEJMoa1407426.
doi: 10.1056/NEJMoa1407426 URL pmid: 25196020 |
[9] |
Horne DJ, Royce SE, Gooze L, et al. Sputum monitoring during tuberculosis treatment for predicting outcome: systematic review and meta-analysis. Lancet Infect Dis, 2010,10(6):387-394. doi: 10.1016/S1473-3099(10)70071-2.
doi: 10.1016/S1473-3099(10)70071-2 URL |
[10] |
Kurbatova EV, Cegielski JP, Lienhardt C, et al. Sputum culture conversion as a prognostic marker for end-of-treatment outcome in patients with multidrug-resistant tuberculosis: a secondary analysis of data from two observational cohort stu-dies. Lancet Respir Med, 2015,3(3):201-209. doi: 10.1016/S2213-2600(15)00036-3.
doi: 10.1016/S2213-2600(15)00036-3 URL |
[11] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014,371(8):723-732. doi: 10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865 URL pmid: 25140958 |
[12] |
Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012,366(23):2151-2160. doi: 10.1056/NEJMoa1112433.
doi: 10.1056/NEJMoa1112433 URL pmid: 22670901 |
[13] |
Lee M, Lee J, Carroll MW, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med, 2012,367(16):1508-1518. doi: 10.1056/NEJMoa1201964.
doi: 10.1056/NEJMoa1201964 URL pmid: 23075177 |
[14] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(10):893-902. doi: 10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL pmid: 32130813 |
[15] |
Marx FM, Dunbar R, Enarson DA, et al. The temporal dynamics of relapse and reinfection tuberculosis after successful treatment: a retrospective cohort study. Clin Infect Dis, 2014,58(12):1676-1683. doi: 10.1093/cid/ciu186.
doi: 10.1093/cid/ciu186 URL |
[16] |
Nsofor CA, Jiang Q, Wu J, et al. Transmission is a Noticeable Cause of Resistance Among Treated Tuberculosis Patients in Shanghai, China. Sci Rep, 2017,7(1):7691. doi: 10.1038/s41598-017-08061-3.
doi: 10.1038/s41598-017-08061-3 URL pmid: 28794425 |
[17] |
Li X, Zhang Y, Shen X, et al. Transmission of drug-resistant tuberculosis among treated patients in Shanghai, China. J Infect Dis, 2007,195(6):864-869. doi: 10.1086/511985.
doi: 10.1086/511985 URL pmid: 17299717 |
[18] |
Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med, 2019,380(13):1201-1213. doi: 10.1056/NEJMoa1811867.
doi: 10.1056/NEJMoa1811867 URL pmid: 30865791 |
[19] |
Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med, 2009,360(23):2397-2405. doi: 10.1056/NEJMoa0808427.
doi: 10.1056/NEJMoa0808427 URL pmid: 19494215 |
[20] |
von Groote-Bidlingmaier F, Patientia R, Sanchez E, et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group phase 3 trial. Lancet Respir Med, 2019,7(3):249-259. doi: 10.1016/S2213-2600(18)30426-0.
doi: 10.1016/S2213-2600(18)30426-0 URL pmid: 30630778 |
[21] |
Chen RY, Dodd LE, Lee M, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resis-tant tuberculosis. Sci Transl Med, 2014,6(265):265ra166. doi: 10.1126/scitranslmed.3009501.
doi: 10.1126/scitranslmed.3009501 URL pmid: 25473034 |
[22] |
Coleman MT, Chen RY, Lee M, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med, 2014,6(265):265ra167. doi: 10.1126/scitranslmed.3009500.
doi: 10.1126/scitranslmed.3009500 URL pmid: 25473035 |
[23] |
Coleman MT, Maiello P, Tomko J, et al. Early Changes by (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun, 2014,82(6):2400-2404. doi: 10.1128/IAI.01599-13.
doi: 10.1128/IAI.01599-13 URL |
[24] |
Lin PL, Coleman T, Carney JPJ, et al. Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother, 2013,57(9):4237-4244. doi: 10.1128/AAC.00277-13.
doi: 10.1128/AAC.00277-13 URL pmid: 23796926 |
[25] |
Friedrich SO, Rachow A, Saathoff E, et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med, 2013,1(6):462-470. doi: 10.1016/S2213-2600(13)70119-X.
doi: 10.1016/S2213-2600(13)70119-X URL pmid: 24429244 |
[26] |
Friedrich SO, Venter A, Kayigire XA, et al. Suitability of Xpert MTB/RIF and genotype MTBDRplus for patient selection for a tuberculosis clinical trial. J Clin Microbiol, 2011,49(8):2827-2831. doi: 10.1128/JCM.00138-11.
doi: 10.1128/JCM.00138-11 URL |
[27] |
Shenai S, Ronacher K, Malherbe S, et al. Bacterial loads measured by the Xpert MTB/RIF assay as markers of culture conversion and bacteriological cure in pulmonary TB. PLoS One, 2016,11(8):e0160062. doi: 10.1371/journal.pone.0160062.
doi: 10.1371/journal.pone.0160062 URL pmid: 27508390 |
[28] |
Malherbe ST, Shenai S, Ronacher K, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med, 2016,22(10):1094-1100. doi: 10.1038/nm.4177.
doi: 10.1038/nm.4177 URL pmid: 27595324 |
[1] | 曹鑫宇, 薛秒, 文艳, 刘莉. 抗结核药物性肝损伤易感基因研究进展[J]. 中国防痨杂志, 2021, 43(2): 190-193. |
[2] | 阮洪云, 李琦, 陈效友, 段鸿飞, 郭超, 操敏, 梁清涛, 王志茹, 杨扬, 孙桂新, 李华, 邓玲, 绍玲玲, 邢维祥, 张芸, 杨新婷. 结核性胸膜炎患者化疗时是否加用糖皮质激素对肺功能动态变化的对比研究[J]. 中国防痨杂志, 2021, 43(1): 58-65. |
[3] | 张静, 陈曦, 王彬, 付雷, 陆宇, 陈效友. 改良单叠氮丙啶-荧光定量PCR法的建立及其检测抗结核药物活性的价值[J]. 中国防痨杂志, 2020, 42(5): 472-480. |
[4] | 高天慧,舒薇,高静韬,陆宇,李琦. 254例耐药肺结核患者克拉霉素耐药情况及影响因素分析[J]. 中国防痨杂志, 2020, 42(3): 259-265. |
[5] | 陈浩,武楠楠,胡文辉,杨忠金. 抗结核药物作用新靶点及其研究进展[J]. 中国防痨杂志, 2020, 42(3): 286-292. |
[6] | 王静,张蒙,贺建清. 抗结核药物引起的艰难梭状芽胞杆菌相关性腹泻一例并文献复习[J]. 中国防痨杂志, 2020, 42(3): 293-296. |
[7] | 邱磊,张少言,郭晓燕,付际游,田黎明,张惠勇,鹿振辉. 化疗方案加芩部丹片治疗复治涂阳肺结核患者的临床价值[J]. 中国防痨杂志, 2020, 42(2): 108-114. |
[8] | 王雪迪,江锋,代倩兰,王京,王冬梅. 中西医联合与单纯西医治疗结核病所致药物性肝损伤的对比分析(2000—2019年文献复习)[J]. 中国防痨杂志, 2020, 42(2): 126-132. |
[9] | 李蒙, 路丽苹, 江琦, 洪建军, 高谦, 杨崇广, 郭晓芹. 上海市松江区肺结核患者治疗药品的种类及费用分析[J]. 中国防痨杂志, 2020, 42(12): 1329-1332. |
[10] | 唐亮, 鲍玉成, 张文龙. 抗结核药品对肠道菌群的改变及其对机体的影响[J]. 中国防痨杂志, 2020, 42(12): 1333-1338. |
[11] | 陈曦,刘忠泉,王彬,朱慧,付雷,李媛媛,陆宇. 14种抗结核药物在巨噬细胞内的抗结核活性评价[J]. 中国防痨杂志, 2019, 41(9): 993-998. |
[12] | 《中国防痨杂志》编委会. 耐药结核病化疗过程中药品不良反应处理的专家共识[J]. 中国防痨杂志, 2019, 41(6): 591-603. |
[13] | 邓国防,张培泽,杨敏,付亮. 二线注射剂治疗耐多药结核病的现状与思考[J]. 中国防痨杂志, 2019, 41(6): 604-608. |
[14] | 赵皎洁,陆宇. 抗结核药物药代动力学/药效学的研究及进展[J]. 中国防痨杂志, 2019, 41(6): 700-704. |
[15] | 郭存炳,李辉,郑淑兰. 参芪十一味颗粒治疗抗结核药物所致白细胞减少症的疗效[J]. 中国防痨杂志, 2018, 40(3): 274-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||