[1] |
World Health Organization . Global tuberculosis report 2018. Geneva:World Health Organization, 2018.
|
[2] |
Knazek RA, Gullino PM, Kohler PO , et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science, 1972,178(4056):65-66.
doi: 10.1126/science.178.4056.65
URL
|
[3] |
Shah PM . An improved method to study antibacterial activity of antibiotics in an vitromodel simulating serum levels. Methods Find Exp Clin Pharmacol, 1980,2(4):171-176.
|
[4] |
Cavaleri M, Manolis E . Hollow fiber system model for tuberculosis: The European medicines agency experience. Clin Infect Dis, 2015, 61 Suppl 1: S1-4.
doi: 10.1093/cid/civ484
URL
|
[5] |
李媛媛, 陆宇 . 动物模型在抗结核新药药效学评价中的应用. 中国防痨杂志, 2017,39(9):1014-1017.
|
[6] |
Timmins GS, Deretic V . Mechanisms of action of isoniazid. Mol Microbiol, 2006,62(5):1220-1227.
doi: 10.1111/mmi.2006.62.issue-5
URL
|
[7] |
郎美琦, 蒋利, 黄佳盛 . 抗结核病药物治疗综述. 临床肺科杂志, 2010,15(8):1153-1154.
|
[8] |
Gumbo T, Louie A, Liu W , et al. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis, 2007,195(2):194-201.
doi: 10.1086/521712
URL
|
[9] |
Gumbo T . New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother, 2010,54(4):1484-1491.
doi: 10.1128/AAC.01474-09
URL
|
[10] |
Almeida Da Silva PE, Palomino JC . Molecular basis and mecha-nisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother, 2011,66(7):1417-1430.
doi: 10.1093/jac/dkr173
URL
|
[11] |
Gumbo T, Louie A, Deziel MR , et al. Concentration-depen-dent Mycobacterium tuberculosis killing and prevention of resis-tance by rifampin. Antimicrob Agents Chemother, 2007,51(11):3781-3788.
doi: 10.1128/AAC.01533-06
URL
|
[12] |
Sirgel FA, Fourie PB, Donald PR , et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med, 2005,172(1):128-135.
doi: 10.1164/rccm.200411-1557OC
URL
|
[13] |
Diacon AH, Patientia RF, Venter A , et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother, 2007,51(8):2994-2996.
doi: 10.1128/AAC.01474-06
URL
|
[14] |
Gumbo T, Dona CS, Meek C , et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother, 2009,53(8):3197-3204.
doi: 10.1128/AAC.01681-08
URL
|
[15] |
Alsultan A, Savic R, Dooley KE , et al. Population pharmacokinetics of pyrazinamide in patients with tuberculosis. Antimicrob Agents Chemother, 2017, 61(6). pii:e02625-16.
|
[16] |
Takayama K, Kilburn JO . Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother, 1989,33(9):1493-1499.
doi: 10.1128/AAC.33.9.1493
URL
|
[17] |
Lakshminarayana SB, Huat TB, Ho PC , et al. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother, 2015,70(3):857-867.
doi: 10.1093/jac/dku457
URL
|
[18] |
Srivastava S, Musuka S, Sherman C , et al. Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis, 2010,201(8):1225-1231.
doi: 10.1086/651174
URL
|
[19] |
Van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K , et al. Pharmacokinetics of levofloxacin in multidrug-and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother, 2017, 61(8). pii:e00343-17.
|
[20] |
Zhou CC, Swaney SM, Shinabarger DL , et al. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother, 2002,46(3):625-629.
doi: 10.1128/AAC.46.3.625-629.2002
URL
|
[21] |
Leach KL, Swaney SM, Colca JR , et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell, 2007,26(3):393-402.
doi: 10.1016/j.molcel.2007.04.005
URL
|
[22] |
Tsona A, Metallidis S, Foroglou N , et al. Linezolid penetration into cerebrospinal fluid and brain tissue. J Chemother, 2010,22(1):17-19.
doi: 10.1179/joc.2010.22.1.17
URL
|
[23] |
Alsultan A, Peloquin CA . Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs, 2014,74(8):839-854.
doi: 10.1007/s40265-014-0222-8
URL
|
[24] |
Brown AN, Drusano GL, Adams JR , et al. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. MBio, 2015,6(6):e01741-15.
|
[25] |
Bolhuis MS, Akkerman OW, Sturkenboom MGG , et al. Line-zolid-based regimens for multidrug-resistant tuberculosis (TB): A systematic review to establish or revise the current recommended dose for TB treatment. Clin Infect Dis, 2018,67 Suppl 3: S327-335.
doi: 10.1093/cid/ciy625
URL
|
[26] |
Andries K, Verhasselt P, Guillemont J , et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005,307(5707):223-227.
doi: 10.1126/science.1106753
URL
|
[27] |
应苗法, 朱剑萍, 马珂 , 等. 新型抗结核药物贝达喹啉的作用及其研究进展. 中国新药与临床杂志, 2014,33(5):325-329.
|
[28] |
Matsumoto M, Hashizume H, Tomishige T , et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466.
doi: 10.1371/journal.pmed.0030466
URL
|
[29] |
Gupta R, Wells CD, Hittel N , et al. Delamanid in the treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis, 2016,20(12):33-37.
doi: 10.5588/ijtld.16.0125
URL
|
[30] |
Gler MT, Skripconoka V, Sanchez-Garavito E , et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012,366(23):2151-2160.
doi: 10.1056/NEJMoa1112433
URL
|