[1] |
Global tuberculosis report 2019. Guidelines for treatment of drug-susceptible tuberculosis and patient care. Geneva: World Health Organization, 2017.
|
[2] |
Tiberi S, Muñoz-Torrico M, Duarte R , et al. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018,24(2):86-98.
|
[3] |
Peng CT, Gao C, Wang NY , et al. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg Med Chem Lett, 2015,25(7):1373-1376.
|
[4] |
Trefzer C, Škovierová H, Buroni S , et al. Benzothiazinones Are Suicide Inhibitors of Mycobacterial Decaprenylphosphoryl-β-d-ribofuranose 2'-Oxidase DprE1. J Am Chem Soc, 2012,134(2):912-915.
|
[5] |
Evans JC, Mizrahi V . Priming the tuberculosis drug pipeline: new antimycobacterial targets and agents. Curr Opin Microbiol, 2018,45:39-46.
|
[6] |
Xu Z, Meshcheryakov VA, Poce G , et al. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc Natl Acad Sci U S A, 2017,114(30):7993-7998.
|
[7] |
Li W, Obregon-Henao A, Wallach JB , et al. Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3. Antimicrob Agents Chemother, 2016,60(9):5198-5207.
|
[8] |
Tahlan K, Wilson R, Kastrinsky DB , et al. SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2012,56(4):1797-1809.
|
[9] |
Mukherjee T, Boshoff H . Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem, 2011,3(11):1427-1454.
|
[10] |
Manjunatha U, Boshoff HI, Barry CE . The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun Integr Biol, 2009,2(3):215-218.
|
[11] |
Matsumoto M, Hashizume H, Tomishige T , et al. OPC-67683, a nitro-dihydroimidazooxazole derivative with promi-sing action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466.
|
[12] |
Global tuberculosis report 2019. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosisin Children and Adolescents: Interim Policy Guidance. Geneva: World Health Organization, 2016.
|
[13] |
Baptista R, Fazakerley DM, Beckmann M , et al. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep, 2018,8(1):5084.
|
[14] |
Lenaerts AJ, Gruppo V, Marietta KS , et al. Preclinical Testing of the Nitroimidazopyran PA-824 for Activity against Mycobacterium tuberculosis in a Series of In Vitro and In Vivo Models. Antimicrob Agents Chemotherapy, 2005,49(6):2294-2301.
|
[15] |
Diacon AH, Dawson R, du Bois J , et al. Phase Ⅱ Dose-Ranging Trial of the Early Bactericidal Activity of PA-824. Antimicrob Agents Chemotherapy, 2012,56(6):3027-3031.
|
[16] |
Dawson R, Diacon AH, Everitt D , et al. Efficiency and safety of the combination of moxifloxacin, pretomanid(PA-824), and pyrazinamide during thefirst 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015,385(9979):1738-1747.
|
[17] |
Makarov V, Manina G, Mikusova K , et al. Benzothiazinones Kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009,324(5928):801-804.
|
[18] |
Li L, Lv K, Yang Y , et al. Identificationof N-Benzyl 3,5-Dinitrobenzamides Derived from PBTZ169 as Antitubercular Agents. ACS Med Chem Lett, 2018,9(7):741-745.
|
[19] |
Li K, Wang Y, Yang G , et al. Oxa, Thia,Heterocycle, and Carborane Analoguesof SQ109: Bacterial and ProtozoalCell Growth Inhibitors. ACS Infect Dis, 2015,1(5):215-221.
|
[20] |
Chen P, Gearhart J, Protopopova M , et al. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother, 2006,58(2):332-337.
|
[21] |
Infectex Announces Positive Phase 2b-3 Clinical Trial Results of SQ109 for the Treatment of Multidrug-Resistant Pulmonary Tuberculosis[EB/OL]. 2017- 03- 21. [2019-10-11]. http://www.sequella.com/docs/Infectex_PR_Mar2017.pdf .
|
[22] |
Updates in the Development of Delamanid, OPC-167832, and Otsuka ’s LAM Biomarker[EB/OL]. [ 2019- 10- 11].http://www.cptrinitiative.org/wp-content/uploads/2017/05/Jeffrey_Hafkin_CPTR2017_JH.pdf .
|
[23] |
Otsuka Awarded Grant to Advance Development of Novel Anti-Tuberculosis Compound OPC-167832 with Delamanid|Business Wire[EB/OL]. 2018-01-29. [2019-10-11]. https://www.businesswire.com/news/home/20180129005073/en/Otsuka-Awarded-Grant-Advance-Development-Anti-Tuberculosis-Compound.
|
[24] |
Working Group for New TB Drugs. TBA-7371[EB/OL].[2019-10-11]. https://www.newtbdrugs.org/pipeline/compound/tba-7371.
|
[25] |
Jeong JW, Jung SJ, Lee HH , et al. In Vitro and In Vivo Activities of LCB01-0371, a New Oxazolidinone. Antimicrob Agents Chemother, 2010,54(12):5359-5362.
|
[26] |
Li X, Hernandez V, Rock FL , et al. Discovery of a Potent and Specific M.tuberculosis Leucyl-tRNA Synthetase Inhibitor: (S)-3-(Aminomethyl)-4-chloro-7-(2-hydroxyethoxy) benzo[c][1,2]oxaborol-1(3H)-ol (GSK656). J Med Chem, 2017,60(19):8011-8026.
|
[27] |
Yip PC, Kam KM, Lam ET , et al. In vitro activities of PNU-100480 and linezolid against drug-susceptible and drug-resis-tant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents, 2013,42(1):96-97.
|
[28] |
Wallis RS, Jakubiec W, Kumar V , et al. Biomarker-Assisted Dose Selection for Safety and Efficacy in Early Development of PNU-100480 for Tuberculosis. Antimicrob Agents Chemother, 2011,55(2):567-574.
|
[29] |
Zong Z, Jing W, Shi J , et al. Comparison of In Vitro Activity and MIC Distributions between the Novel Oxazolidinone Delpazolid and Linezolid against Multidrug-Resistant and Extensively Drug-ResistantMycobacterium tuberculosis in China. Antimicrob Agents Chemother, 2018,62(5). pii: e00165-18.
|
[30] |
Tenero D, Derimanov G, Carlton A , et al. First-Time-in-Human Study and Predict-ion of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment. Antimicrob Agents Chemother, 2019, 63(8). pii:e00240-19.
|
[31] |
Bernard Fourie. The contribution of bedaquiline to the treatment of MDRTB.[C/OL].Geneva: WHO/STB Expert Group Meeting, 2013 [ 2019- 10- 11]. http://www.atsdr.cdc.gov/c95ab.html .
|
[32] |
Kalia NP, Hasenoehrl EJ, Ab Rahman NB , et al. Exploiting the syntheticlethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci U S A, 2017,114(28):7426-7431.
|
[33] |
Lechartier B, Cole ST . Mode of Action of Clofazimine and Combination Therapy with Benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015,59(8):4457-4463.
|
[34] |
Erica Lessem,Lindsay McKenna. An Activist’s Guide to BEDAQUILINE (Sirturo) [EB/OL].[ 2019- 10- 11]. http://www.treatmentactiongroup.org/sites/default/files/BDQ_guide_10_5_18.pdf .
|
[35] |
Global tuberculosis report 2019. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis: interim policy guidance. Geneva:World Health Organization, 2013.
|
[36] |
Pethe K, Bifani P, Jang J , et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med, 2013,19(9):1157-1160.
|
[37] |
Zhang D, Lu Y, Liu K , et al. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J Med Chem, 2012,55(19):8409-8417.
|