[1] |
Global tuberculosis report 2019. Global tuberculosis report 2019. Genenva:World Health Organization, 2019.
|
[2] |
Global tuberculosis report 2019. WHO consolidated guidelines on drug-resistant tuberculosis treatment. WHO/CDS/TB/2019.7. Geneva: World Health Organization, 2019.
|
[3] |
Global tuberculosis report 2019. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2014.
|
[4] |
Global tuberculosis report 2019. Treatment guidelines for drug-resistant tuberculosis. 2016 update. WHO/HTM/TB/2016.04. Geneva: World Health Organization, 2016.
|
[5] |
Bolhuis MS, van der Laan T, Kosterink JG , et al. In vitro synergy between linezolid and clarithromycin against Mycobacterium tuberculosis. Eur Respir J, 2014,44(3):808-811.
|
[6] |
Cavalieri SJ, Biehle JR, Sanders WJ . Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1995,39(7):1542-1545.
|
[7] |
陆宇, 王彬, 赵伟杰 , 等. 氯法齐明与其他抗结核药物联用对结核分枝杆菌的作用. 中华结核和呼吸杂志, 2010,33(9):675-678.
|
[8] |
Falzari K, Zhu Z, Pan D , et al. In Vitro and In Vivo Activities of Macrolide Derivatives against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2005,49(4):1447-1454.
|
[9] |
van der Paardt AF, Wilffert B, Akkerman OW , et al. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J, 2015,46(2):444-455.
|
[10] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 2017-11-09.
|
[11] |
中华人民共和国国家卫生和计划生育委员会. WS 196—2017结核病分类. 2017-11-09.
|
[12] |
赵雁林, 逄宇 . 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 59-65.
|
[13] |
Global tuberculosis report 2019. Definitions and reporting framework for tuberculosis-2013 revision. Geneva: World Health Organization, 2013.
|
[14] |
李君莲, 张敬蕊, 李桂莲 , 等. 新疆地区93株耐多药结核分枝杆菌耐药情况分析. 中国预防医学杂志, 2012,13(9):645-649.
|
[15] |
邝小佳, 邝浩斌, 蔡杏珊 , 等. 广州地区5年间耐多药结核分枝杆菌药物敏感试验结果分析. 临床肺科杂志, 2016,21(1):10-12.
|
[16] |
贾芳, 宋青山, 黄海荣 . 某医院广泛耐药结核病住院患者耐药特点及危险因素分析. 中华疾病控制杂志, 2019,23(3):336-340.
|
[17] |
李影, 张东浩 . 531株结核分枝杆菌的药敏分析. 中国医药指南, 2015,13(26):156-157.
|
[18] |
Morris RP, Nguyen L, Gatfield J , et al. Ancestral Antibiotic Resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2005,102(34):12200-12205.
|
[19] |
Warit S, Phunpruch S, Jityam C , et al. Genetic characterisation of a whiB7 mutant of a Mycobacterium tuberculosis clinical strain. J Glob Antimicrob Resist, 2015,3(4):262-266.
|
[20] |
Buriánková K, Doucet-Populaire F, Dorson O , et al. Molecular Basis of Intrinsic Macrolide Resistance in the Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2004,48(1):143-150.
|
[21] |
Phunpruch S, Warit S, Suksamran R , et al. A role for 16S rRNA dimethyltransferase (ksgA) in intrinsic clarithromycin resistance in Mycobacterium tuberculosis. Int J Antimicrob Agents, 2013,41(6):548-551.
|
[22] |
Danilchanka O, Pires D, Anes E , et al. The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules. Antimicrob Agents Chemother, 2015,59(4):2328-2336.
|
[23] |
Vester B, Douthwaite S . Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother, 2001,45(1):1-12.
|
[24] |
Pang Y, Zhu D, Zheng H , et al. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis, 2017,17(1):711.
|
[25] |
Pule CM, Sampson SL, Warren RM , et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother, 2016,71(1):17-26.
|
[26] |
Te Brake LHM, de Knegt GJ, de Steenwinkel JE , et al. The Role of Efflux Pumps in Tuberculosis Treatment and Their Promise as a Target in Drug Development: Unraveling the Black Box. Annu Rev Pharmacol Toxicol, 2018,58:271-291.
|
[27] |
Moore RA, DeShazer D, Reckseidler S , et al. Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother, 1999,43(3):465-470.
|
[28] |
Alame-Emane AK, Xu P, Pierre-Audigier C , et al. Pyrazinamide resistance in Mycobacterium tuberculosis arises after rifampicin and fluoroquinolone resistance. Int J Tuberc Lung Dis, 2015,19(6):679-684.
|
[29] |
Xianyu J, Feng J, Yang Y , et al. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations. Clin Biochem, 2018,55:21-27.
|
[30] |
Dharmaraja AT . Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem, 2017,60(8):3221-3240.
|
[31] |
Yew WW, Chan DP, Chang KC , et al. Does oxidative stress contribute to antituberculosis drug resistance?. J Thorac Dis, 2019,11(7):E100-102.
|
[32] |
Amábile-Cuevas CF . Antibiotic Resistance: From Darwin to Lederberg to Keynes. Microb Drug Resist, 2013,19(2):73-87.
|
[33] |
O’Sullivan DM, McHugh TD, Gillespie SH . The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. J Antimicrob Chemother, 2008,62(4):709-712.
|
[34] |
Rastogi N, Labrousse V . Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Antimicrob Agents Chemother, 1991,35(3):462-470.
|
[35] |
Bhusal Y, Shiohira CM, Yamane N . Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int J Antimicrob Agents, 2005,26(4):292-297.
|
[36] |
Mor N, Esfandiari A . Synergistic activities of clarithromycin and pyrazinamide against Mycobacterium tuberculosis in human macrophages. Antimicrob Agents Chemother, 1997,41(9):2035-2036.
|
[37] |
李琦, 姜晓颖, 高孟秋 , 等. 18个月化疗方案对耐多药肺结核患者的治疗效果分析. 中国防痨杂志, 2019,41(3):294-301.
|
[38] |
Van der Paardt AL, Akkerman OW, Gualano G , et al. Safety and tolerability of clarithromycin in the treatment of multidrug-resistant tuberculosis. Eur Respir J, 2017,49(3):1601612.
|