中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (S2): 522-527.
唐灵通, 涂祥俊, 钟涛, 张薇, 杨波, 曾超林, 杨程, 王昌银, 陈莉
收稿日期:
2024-11-13
出版日期:
2024-12-30
发布日期:
2025-01-10
通信作者:
唐灵通,Email:364686149@qq.com
基金资助:
Received:
2024-11-13
Online:
2024-12-30
Published:
2025-01-10
摘要: 结核病(tuberculosis,TB)是一种由结核分枝杆菌(Mycobacterium tuberculosis,MTB)引起的严重传染性疾病,因其病原体耐药性在全球范围内日益增加,已对公共卫生安全构成了重大威胁。因此,深入了解MTB的耐药机制、探索结核病的诊断方法,以及加速疫苗和新药的研发显得尤为重要。作为系统生物学的一个重要分支,代谢组学通过分析生物样本中的小分子代谢物,揭示生物系统的代谢状态和功能变化。在结核病的研究中,代谢组学取得了显著进展,为结核病的诊断、治疗和疫苗开发提供了新的视角和工具。本文综述了代谢组学在结核病研究中的应用及进展,包括结核病的代谢特征、代谢组学在结核病诊断和治疗中的应用、药物不良反应监测、治疗效果评价及代谢组学在结核病疫苗开发中的潜力。
唐灵通, 涂祥俊, 钟涛, 张薇, 杨波, 曾超林, 杨程, 王昌银, 陈莉. 代谢组学在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(S2): 522-527.
[1] World Health Organization.Global tuberculosis report 2024. Geneva:World Health Organization,2024. [2] Wishart DS.Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev,2019,99(4):1819-1875. [3] Jiang J,Li Z,Chen C,et al.Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis. Infect Drug Resist,2021,14:4795-4807. [4] Pitaloka DAE,Syamsunarno MRAAA,Abdulah R,et al.Omics Biomarkers for Monitoring Tuberculosis Treatment:A Mini-Review of Recent Insights and Future Approaches. Infect Drug Resist,2022,15:2703-2711. [5] Liu J,Tang L,Lu Q,et al.Plasma Quantitative Lipid Profiles:Identification of CarnitineC18:1-OH,CarnitineC18:2-OH and FFA(20:1)as Novel Biomarkers for Pre-warning and Prognosis in Acute Myocardial Infarction. Front Cardiovasc Med,2022,9:848840. [6] Montaner J,Ramiro L,Simats A,et al.Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol,2020,16(5):247-264. [7] 王爽,吴树法,令垚,等. 基于代谢组学探究非脂质代谢物在肥胖与糖尿病视网膜病变间的中介作用:孟德尔随机化研究. 中国全科医学,1-11[2024-11-18]. [8] 何地,李娟,胡俊杰,等.整合肠道菌群和代谢组学探讨疏肝和胃汤改善抑郁大鼠的作用机制.世界科学技术-中医药现代化,2024,26(2):336-350. [9] Johnson CH,Ivanisevic J,Siuzdak G.Metabolomics:beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol,2016,17(7):451-459. [10] Wei Y,Jasbi P,Shi X,et al.Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J Proteome Res,2021,20(6):3124-3133. [11] 郝攀峰,潘澍泽,秦林原,等.机器学习方法在代谢组学数据统计分析中的新近研究进展.中国医院统计,2024,31(04):313-320. [12] Puckett S,Trujillo C,Eoh H,et al.Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in [13] Noy T,Vergnolle O,Hartman TE,et al.Central Role of Pyruvate Kinase in Carbon Co-catabolism of [14] de Carvalho LP,Fischer SM,Marrero J,et al. Metabolomics of [15] Takayama K,Wang C,Besra GS.Pathway to synthesis and processing of mycolic acids in [16] Daniel J,Maamar H,Deb C,et al. [17] 曹荣月,张昕黎,袁冬平,等. 结核分枝杆菌热休克蛋白65对 [18] VanderVen BC,Fahey RJ,Lee W,et al. Novel inhibitors of cholesterol degradation in [19] Driscoll MD,McLean KJ,Levy C,et al. Structural and biochemical characterization of [20] Casabon I,Swain K,Crowe AM,et al.Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism. J Bacteriol,2014,196(3):579-587. [21] Yang X,Dubnau E,Smith I,et al.Rv1106c from [22] Knol J,Bodewits K,Hessels GI,et al.3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in [23] Capyk JK,Casabon I,Gruninger R,et al.Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in [24] Casabon I,Zhu SH,Otani H,et al.Regulation of the KstR2 regulon of [25] Crowe AM,Casabon I,Brown KL,et al.Catabolism of the Last Two Steroid Rings in [26] Wilburn KM,Fieweger RA,VanderVen BC. Cholesterol and fatty acids grease the wheels of [27] Joshi SM,Pandey AK,Capite N,et al.Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A,2006,103(31):11760-11765. [28] Nazarova EV,Montague CR,La T,et al.Rv3723/LucA coordinates fatty acid and cholesterol uptake in [29] Agapova A,Serafini A,Petridis M,et al.Flexible nitrogen utilisation by the metabolic generalist pathogen [30] 李鹏川,梁艳,张林西,等. 应用生物信息学分析结核分枝杆菌表位串联蛋白W541的结构和功能. 中国防痨杂志,2022,44(12):1345-1357. [31] Shin JH,Yang JY,Jeon BY,et al.1H NMR-based metabolomic profiling in mice infected with [32] Borah K,BeyßM,Theorell A,et al. Intracellular [33] Albors-Vaquer A,Rizvi A,Matzapetakis M,et al.Active and prospective latent tuberculosis are associated with different metabolomic profiles:clinical potential for the identification of rapid and non-invasive biomarkers. Emerg Microbes Infect,2020,9(1):1131-1139. [34] Cho Y,Park Y,Sim B,et al.Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach. Sci Rep,2020,10(1):3825. [35] Beukes D,van Reenen M,Loots DT,et al. Tuberculosis is associated with sputum metabolome variations,irrespective of patient sex or HIV status:an untargeted GCxGC-TOFMS study. Metabolomics,2023,19(6):55. [36] Zhang A,Sun H,Wang X,et al.Metabonomic urinary biomarkers differentiation between tuberculosis and nontuberculous mycobacterial infections. J Proteome Res,2021,9(12):6825-6833. [37] Johnson S,Want EJ,Li JV,et al. [38] Das MK,Bishwal SC,Das A,et al.Deregulated tyrosine-phenylalanine metabolism in pulmonary tuberculosis patients. J Proteome Res,2015,14(4):1947-1956. [39] Vrieling F,Alisjahbana B,Sahiratmadja E,et al.Plasma metabolomics in tuberculosis patients with and without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Sci Rep,2019,9(1):18669. [40] Ding Y,Raterink RJ,Marín-Juez R,et al.Tuberculosis causes highly conserved metabolic changes in human patients,mycobacteria-infected mice and zebrafish larvae. Sci Rep,2020,10(1):11635. [41] Amalia F,Syamsunarno MRAA,Triatin RD,et al.The Role of Amino Acids in Tuberculosis Infection:A Literature Review. Metabolites,2022,12(10):933. [42] Combrink M,du Preez I,Ronacher K,et al. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy:A Pharmacometabolomics Study. OMICS,2019,23(11):560-572. [43] Pal R,Hameed S,Kumar P,Singh S,Fatima Z.Comparative lipidomics of drug sensitive and resistant [44] Rêgo AM,Alves da Silva D,Ferreira NV,et al. Metabolic profiles of multidrug resistant and extensively drug resistant [45] Zhao H,Si ZH,Li MH,et al.Pyrazinamide-induced hepatotoxicity and gender differences in rats as revealed by a 1H NMR based metabolomics approach. Toxicol Res (Camb),2016,6(1):17-29. [46] Deng Y,Luo X,Li X,et al.Screening of Biomarkers and Toxicity Mechanisms of Rifampicin-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Front Pharmacol,2022,13:925509. [47] Cao J,Mi Y,Shi C,et al.First-line anti-tuberculosis drugs induce hepatotoxicity:A novel mechanism based on a urinary metabolomics platform. Biochem Biophys Res Commun,2018,497(2):485-491. [48] Mahapatra S,Woolhiser LK,Lenaerts AJ,et al.A novel metabolite of antituberculosis therapy demonstrates host activation of isoniazid and formation of the isoniazid-NAD+adduct. Antimicrob Agents Chemother,2012,56(1):28-35. [49] 廖传玉,李同心,唐神结,等. 高剂量抗结核药物治疗结核病的研究进展. 中国感染与化疗杂志,2023,23(5):639-646. [50] Chahine EB,Karaoui LR,Mansour H.Bedaquiline:a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother,2014,48(1):107-115. [51] Bahuguna A,Rawat S,Rawat DS.QcrB in Mycobacterium tuberculosis:The new drug target of antitubercular agents. Med Res Rev,2021,41(4):2565-2581. [52] Rudraraju RS,Daher SS,Gallardo-Macias R,et al. [53] Nunes JES,Duque MA,de Freitas TF,et al. [54] Chen Z,Wang T,Liu Z,et al.Inhibition of Autophagy by MiR-30A Induced by [55] Rohde K,Yates RM,Purdy GE,et al. [56] Sao Emani C,Williams MJ,Van Helden PD,et al.Gamma-glutamylcysteine protects ergothioneine-deficient [57] Oddo M,Renno T,Attinger A,et al.Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular [58] Sia JK,Rengarajan J.Immunology of |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||