[1] |
Lönnroth K, Roglic G, Harries AD. Improving tuberculosis prevention and care through addressing the global diabetes epidemic: from evidence to policy and practice. Lancet Diabetes Endocrinol, 2014, 2(9):730-739. doi:10.1016/S2213-8587(14)70109-3.
|
[2] |
Restrepo BI. Diabetes and Tuberculosis. Microbiol Spectr, 2016, 4(6):10.1128/microbiolspec.TNMI7-0023-2016. doi:10.1128/microbiolspec.TNMI7-0023-2016.
|
[3] |
Kumar Nathella P, Babu S. Influence of diabetes mellitus on immunity to human tuberculosis. Immunology, 2017, 152(1):13-24. doi:10.1111/imm.12762.
pmid: 28543817
|
[4] |
Yu X, Li L, Xia L, et al. Impact of metformin on the risk and treatment outcomes of tuberculosis in diabetics: a systematic review. BMC Infect Dis, 2019, 19(1):859. doi:10.1186/s12879-019-4548-4.
pmid: 31623569
|
[5] |
Zhang M, He JQ. Impacts of metformin on tuberculosis incidence and clinical outcomes in patients with diabetes: a systematic review and meta-analysis. Eur J Clin Pharmacol, 2020, 76(2):149-159. doi:10.1007/s00228-019-02786-y.
pmid: 31786617
|
[6] |
Vashisht R, Brahmachari SK. Metformin as a potential combination therapy with existing front-line antibiotics for Tuberculosis. J Transl Med, 2015, 13:83. doi:10.1186/s12967-015-0443-y.
pmid: 25880846
|
[7] |
Heo E, Kim E, Jang EJ, et al. The cumulative dose-dependent effects of metformin on the development of tuberculosis in patients newly diagnosed with type 2 diabetes mellitus. BMC Pulm Med, 2021, 21(1):303. doi:10.1186/s12890-021-01667-4.
|
[8] |
Burgess S, Daniel RM, Butterworth AS, et al. EPIC-InterAct Consortium. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol, 2015, 44(2):484-495. doi:10.1093/ije/dyu176.
pmid: 25150977
|
[9] |
Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol, 2016, 45(3):908-915. doi:10.1093/ije/dyw127.
pmid: 27427429
|
[10] |
Carreras-Torres R, Haycock PC, Relton CL, et al. The causal relevance of body mass index in different histological types of lung cancer: A Mendelian randomization study. Sci Rep, 2016, 6:31121. doi:10.1038/srep31121.
pmid: 27487993
|
[11] |
Wang J, Tang H, Duan Y, et al. Association between Sleep Traits and Lung Cancer: A Mendelian Randomization Study. J Immunol Res, 2021, 2021:1893882. doi:10.1155/2021/1893882.
|
[12] |
Hartwig FP, Davies NM, Hemani G, et al. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol, 2016, 45(6):1717-1726. doi:10.1093/ije/dyx028.
pmid: 28338968
|
[13] |
Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol, 2013, 178(7):1177-1184. doi:10.1093/aje/kwt084.
pmid: 23863760
|
[14] |
Hartwig FP, Davies NM, Hemani G, et al. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol, 2016, 45(6):1717-1726. doi:10.1093/ije/dyx028.
pmid: 28338968
|
[15] |
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol, 2015, 44(2):512-525. doi:10.1093/ije/dyv080.
pmid: 26050253
|
[16] |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017, 32(5):377-389. doi:10.1007/s10654-017-0255-x.
pmid: 28527048
|
[17] |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol, 2016, 40(4):304-314. doi:10.1002/gepi.21965.
pmid: 27061298
|
[18] |
Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ, 1997, 315(7121):1533-1537. doi:10.1136/bmj.315.7121.1533.
pmid: 9432252
|
[19] |
Bowden J, Del Greco MF, Minelli C, et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol, 2016, 45(6):1961-1974. doi:10.1093/ije/dyw220.
pmid: 27616674
|
[20] |
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med, 2002, 21(11):1539-1558. doi:10.1002/sim.1186.
pmid: 12111919
|
[21] |
Al-Rifai RH, Pearson F, Critchley JA, et al. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 2017, 12(11):e0187967. doi:10.1371/journal.pone.0187967.
|
[22] |
Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis, 2009, 9(12):737-746. doi:10.1016/S1473-3099(09)70282-8.
pmid: 19926034
|
[23] |
Zhong H, Magee MJ, Huang Y, et al. Evaluation of the Host Genetic Effects of Tuberculosis-Associated Variants Among Patients With Type 1 and Type 2 Diabetes Mellitus. Open Forum Infect Dis, 2020, 7(4):ofaa106. doi:10.1093/ofid/ofaa106.
|
[24] |
Florez JC. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J Clin Endocrinol Metab, 2008, 93(12):4633-4642. doi:10.1210/jc.2008-1345.
|
[25] |
Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS?. Ann N Y Acad Sci, 2010, 1212:59-77. doi:10.1111/j.1749-6632.2010.05838.x.
|
[26] |
InterAct Consortium, Scott RA, Langenberg C, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia, 2013, 56(1):60-69. doi:10.1007/s00125-012-2715-x.
pmid: 23052052
|
[27] |
Barreiro LB, Tailleux L, Pai AA, et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A, 2012, 109(4):1204-1209. doi:10.1073/pnas.1115761109.
|
[28] |
World Health Organization. Collaborative Framework for Care and Control of Tuberculosis and Diabetes. Geneva:World Health Organization, 2013.
|
[29] |
Riza AL, Pearson F, Ugarte-Gil C, et al. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol, 2014, 2(9):740-753. doi:10.1016/S2213-8587(14)70110-X.
|
[30] |
Singhal A, Jie L, Kumar P, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med, 2014, 6(263):263ra159. doi:10.1126/scitranslmed.3009885.
|
[31] |
Marupuru S, Senapati P, Pathadka S, et al. Protective effect of metformin against tuberculosis infections in diabetic patients: an observational study of south Indian tertiary healthcare facility. Braz J Infect Dis, 2017, 21(3):312-316. doi:10.1016/j.bjid.2017.01.001.
pmid: 28199824
|
[32] |
Ma Y, Pang Y, Shu W, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis, 2018, 37(7):1259-1263. doi:10.1007/s10096-018-3242-6.
|
[33] |
Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol, 2004, 33(1):30-42. doi:10.1093/ije/dyh132.
pmid: 15075143
|
[34] |
Thompson JR, Minelli C, Bowden J, et al. Mendelian randomization incorporating uncertainty about pleiotropy. Stat Med, 2017, 36(29):4627-4645. doi:10.1002/sim.7442.
pmid: 28850703
|
[35] |
Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet, 2013, 29(2):66-73. doi:10.1016/j.tig.2012.10.010.
pmid: 23140989
|
[36] |
Sekula P, Del Greco MF, Pattaro C, et al. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J Am Soc Nephrol, 2016, 27(11):3253-3265. doi:10.1681/ASN.2016010098.
pmid: 27486138
|