[1] |
World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection, third edition. Geneva: World Health Organi-zation, 2024.
|
[2] |
World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022.
|
[3] |
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023.
|
[4] |
World Health Organization. Target regimen profiles for TB treatment: candidates: rifampicin-susceptible, rifampicin-resistant and pan-TB treatment regimens. Geneva: World Health Organization, 2016.
|
[5] |
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol, 2022, 20(11):685-701. doi:10.1038/s41579-022-00731-y.
pmid: 35478222
|
[6] |
Paton NI, Cousins C, Suresh C, et al. Treatment Strategy for Rifampin-Susceptible Tuberculosis. N Engl J Med, 2023, 388(10):873-887. doi:10.1056/NEJMoa2212537.
|
[7] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020, 382(10):893-902. doi:10.1056/NEJMoa1901814.
|
[8] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med, 2022, 387(9):810-823. doi:10.1056/NEJMoa2119430.
|
[9] |
Nyang’wa BT, Berry C, Kazounis E, et al. Short oral regimens for pulmonary rifampicin-resistant tuberculosis (TB-PRACTECAL): an open-label, randomised, controlled, phase 2B-3, multi-arm, multicentre, non-inferiority trial. Lancet Respir Med, 2024, 12(2):117-128. doi:10.1016/S2213-2600(23)00389-2.
|
[10] |
World Health Organization. Target regimen profiles for tuberculosis treatment, 2023 update. Geneva: World Health Organization, 2024.
|
[11] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012, 380(9846):986-993. doi:10.1016/S0140-6736(12)61080-0.
pmid: 22828481
|
[12] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med, 2015, 191(8):943-953. doi:10.1164/rccm.201410-1801OC.
|
[13] |
Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015, 385(9979):1738-1747. doi:10.1016/S0140-6736(14)62002-X.
pmid: 25795076
|
[14] |
Tweed CD, Dawson R, Burger DA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med, 2019, 7(12):1048-1058. doi:10.1016/S2213-2600(19)30366-2.
pmid: 31732485
|
[15] |
Cevik M, Thompson LC, Upton C, et al. Bedaquiline-pretomanid-moxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. Lancet Infect Dis, 2024, 17: S1473- 3099(24)00223-8. doi:10.1016/S1473-3099(24)00223-8.
|
[16] |
Almeida D, Converse PJ, Li SY, et al. Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant Rv0678 Mutant in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2021, 65(12):e0141221. doi:10.1128/AAC.01412-21.
|
[17] |
Tasneen R, Betoudji F, Tyagi S, et al. Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Beda-quiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2015, 60(1):270-277. doi:10.1128/AAC.01691-15.
|
[18] |
Hariguchi N, Chen X, Hayashi Y, et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Antimicrob Agents Chemother, 2020, 64(6):e02020-19. doi:10.1128/AAC.02020-19.
|
[19] |
Tenero D, Derimanov G, Carlton A, et al. First-Time-in-Human Study and Prediction of Early Bactericidal Activity for GSK3036656, a Potent Leucyl-tRNA Synthetase Inhibitor for Tuberculosis Treatment. Antimicrob Agents Chemother, 2019, 63(8):e00240-19. doi:10.1128/AAC.00240-19.
|
[20] |
Brown KL, Wilburn KM, Montague CR, et al. Cyclic AMP-Mediated Inhibition of Cholesterol Catabolism in Mycobacterium tuberculosis by the Novel Drug Candidate GSK2556286. Antimicrob Agents Chemother, 2023, 67(1): e0129422. doi:10.1128/aac.01294-22.
|
[21] |
Wallis RS, Cohen T, Menzies NA, et al. Pan-tuberculosis regimens: an argument for. Lancet Respir Med, 2018, 6(4):239-240. doi:10.1016/S2213-2600(18)30096-1.
|
[22] |
Dheda K, Gumbo T, Lange C, et al. Pan-tuberculosis regimens: an argument against. Lancet Respir Med, 2018, 6(4):240-242. doi:10.1016/S2213-2600(18)30097-3.
pmid: 29595502
|
[23] |
Gupta R, Wells CD. Pan-tuberculosis regimens: re-framing the argument. Lancet Respir Med, 2018, 6(7):e28. doi:10.1016/S2213-2600(18)30189-9.
pmid: 29976444
|
[24] |
Arinaminpathy N, Gomez GB, Sachdeva KS, et al. The potential deployment of a pan-tuberculosis drug regimen in India: A modelling analysis. PLoS One, 2020, 15(3):e0230808. doi:10.1371/journal.pone.0230808.
|
[25] |
Kendall EA, Brigden G, Lienhardt C, et al. Would pan-tuberculosis treatment regimens be cost-effective?. Lancet Respir Med, 2018, 6(7):486-488. doi:10.1016/S2213-2600(18)30197-8.
pmid: 29859919
|