中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (9): 1227-1232.doi: 10.19982/j.issn.1000-6621.20250143
陈丽瑶1, 彭逍1, 刘原园1, 石金2, 郭永丽1, 鲁洁1()
收稿日期:
2025-04-09
出版日期:
2025-09-10
发布日期:
2025-08-27
通信作者:
鲁洁
E-mail:lujiebch@163.com
基金资助:
Chen Liyao1, Peng Xiao1, Liu Yuanyuan1, Shi Jin2, Guo Yongli1, Lu Jie1()
Received:
2025-04-09
Online:
2025-09-10
Published:
2025-08-27
Contact:
Lu Jie
E-mail:lujiebch@163.com
Supported by:
摘要:
铁死亡是一种由铁依赖性脂质过氧化作用诱导的新死亡方式,与巨噬细胞死亡及宿主-病原体相互作用密切相关,在结核病中具有重要作用。笔者系统阐述了铁死亡的定义及其核心特征,深入解析铁死亡的分子调控机制并详细论述铁死亡的重要调控通路。同时,概述了结核分枝杆菌与宿主相互作用相关的铁死亡调控机制,归纳了与结核病诊疗相关的铁死亡生物标志物,并探讨了靶向铁死亡在结核病治疗中的潜在应用前景。本文为理解结核病的发病机理提供了新视角,为开发基于铁死亡调控的结核病精准诊疗策略提供了重要的理论依据和创新思路。
中图分类号:
陈丽瑶, 彭逍, 刘原园, 石金, 郭永丽, 鲁洁. 铁死亡的分子机制及其在结核病诊疗中的潜在应用[J]. 中国防痨杂志, 2025, 47(9): 1227-1232. doi: 10.19982/j.issn.1000-6621.20250143
Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. doi: 10.19982/j.issn.1000-6621.20250143
[1] | Jumabayi W, Reyimu A, Zheng R, et al. Ferroptosis: A new way to intervene in the game between Mycobacterium tuberculosis and macrophages. Microb Pathog, 2024, 197:107014. doi:10.1016/j.micpath.2024.107014. |
[2] | Huang L, Nazarova EV, Tan S, et al. Growth of Mycobacte-rium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med, 2018, 215(4):1135-1152. doi:10.1084/jem.20172020. |
[3] |
Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 2009, 136(1):37-49. doi:10.1016/j.cell.2008.11.014.
pmid: 19135887 |
[4] | Tsai ML, Tsai YG, Lin YC, et al. IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy. Int J Mol Sci, 2021, 23(1):3. doi:10.3390/ijms23010003. |
[5] | Chai J, Luo L, Hou F, et al. Agmatine Reduces Lipopolysaccharide-Mediated Oxidant Response via Activating PI3K/Akt Pathway and Up-Regulating Nrf2 and HO-1 Expression in Macrophages. PLoS One, 2016, 11(9):e163634. doi:10.1371/journal.pone.0163634. |
[6] |
Le Belle JE, Orozco NM, Paucar AA, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell, 2011, 8(1):59-71. doi:10.1016/j.stem.2010.11.028.
pmid: 21211782 |
[7] |
Pope LE, Dixon SJ. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol, 2023, 33(12):1077-1087. doi:10.1016/j.tcb.2023.05.003.
pmid: 37407304 |
[8] |
Qiang L, Zhang Y, Lei Z, et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat Commun, 2023, 14(1):1430. doi:10.1038/s41467-023-37148-x.
pmid: 36932056 |
[9] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5):1060-1072. doi:10.1016/j.cell.2012.03.042.
pmid: 22632970 |
[10] | Fu B, Lou Y, Wu P, et al. Emerging role of necroptosis, pyroptosis, and ferroptosis in breast cancer: New dawn for overcoming therapy resistance. Neoplasia, 2024, 55:101017. doi:10.1016/j.neo.2024.101017. |
[11] | Pratt DA, Tallman KA, Porter NA. Free radical oxidation of polyunsaturated lipids: New mechanistic insights and the development of peroxyl radical clocks. Acc Chem Res, 2011, 44(6):458-467. doi:10.1021/ar200024c. |
[12] |
Henning Y, Blind US, Larafa S, et al. Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis, 2022, 13(7):662. doi:10.1038/s41419-022-05121-z.
pmid: 35906211 |
[13] | Dingjan T, Futerman AH. The fine-tuning of cell membrane lipid bilayers accentuates their compositional complexity. Bioessays, 2021, 43(5):e2100021. doi:10.1002/bies.202100021. |
[14] | Li Y, Zhao T, Li J, et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res, 2022, 2022:2233906. doi:10.1155/2022/2233906. |
[15] |
Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications. Cell Res, 2021, 31(2):107-125. doi:10.1038/s41422-020-00441-1.
pmid: 33268902 |
[16] | Kisova-Vargova L, Cernanska D, Bhide M. Comparative study of binding of ovine complement factor H with different Borrelia genospecies. Folia Microbiol (Praha), 2012, 57(2):123-128. doi:10.1007/s12223-012-0104-y. |
[17] | Kwon M, Park E, Lee S, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, 2015, 6(27):24393-24403. doi:10.18632/oncotarget.5162. |
[18] |
Mesquita G, Silva T, Gomes AC, et al. H-Ferritin is essential for macrophages’ capacity to store or detoxify exogenously added iron. Sci Rep, 2020, 10(1):3061. doi:10.1038/s41598-020-59898-0.
pmid: 32080266 |
[19] |
Sanchez M, Sabio L, Galvez N, et al. Iron chemistry at the service of life. IUBMB Life, 2017, 69(6):382-388. doi:10.1002/iub.1602.
pmid: 28150902 |
[20] |
Phelan JJ, Basdeo SA, Tazoll SC, et al. Modulating Iron for Metabolic Support of TB Host Defense. Front Immunol, 2018, 9:2296. doi:10.3389/fimmu.2018.02296.
pmid: 30374347 |
[21] | Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4):266-282. doi:10.1038/s41580-020-00324-8. |
[22] |
Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol, 2019, 15(12):1137-1147. doi:10.1038/s41580-020-00324-8.
pmid: 31740834 |
[23] |
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta, 2015, 1851(4):308-330. doi:10.1016/j.bbalip.2014.10.002.
pmid: 25316652 |
[24] | Shah R, Shchepinov MS, Pratt DA. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Cent Sci, 2018, 4(3):387-396. doi:10.1021/acscentsci.7b00589. |
[25] | Shintoku R, Takigawa Y, Yamada K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3. Cancer Sci, 2017, 108(11):2187-2194. doi:10.1111/cas.13380. |
[26] | Li F, Long H, Zhou Z, et al. System X(c)(-)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol, 2022, 13:910292. doi:10.3389/fphar.2022.910292. |
[27] | Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med, 2020, 152:175-185. doi:10.1016/j.freeradbiomed.2020.02.027. |
[28] | Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med, 2019, 133:144-152. doi:10.1016/j.freeradbiomed.2018.09.014. |
[29] |
Gao M, Monian P, Quadri N, et al. Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell, 2015, 59(2):298-308. doi:10.1016/j.molcel.2015.06.011.
pmid: 26166707 |
[30] | Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox Signal, 2018, 29(1):61-74. doi:10.1089/ars.2017.7115. |
[31] |
Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab, 2020, 32(6):920-937. doi:10.1016/j.cmet.2020.10.011.
pmid: 33217331 |
[32] | Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP 1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784):688-692. doi:10.1038/s41586-019-1705-2. |
[33] |
Ingold I, Berndt C, Schmitt S, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 2018, 172(3):409-422. doi:10.1016/j.cell.2017.11.048.
pmid: 29290465 |
[34] | Friedmann Angeli JP, Conrad M. Selenium and GPX4, a vital symbiosis. Free Radic Biol Med, 2018, 127:153-159. doi:10.1016/j.freeradbiomed.2018.03.001. |
[35] |
Elguindy MM, Nakamaru-Ogiso E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J Biol Chem, 2015, 290(34):20815-20826. doi:10.1074/jbc.M115.641498.
pmid: 26063804 |
[36] |
Yang D, Yaguchi T, Nagata T, et al. AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol Biochem, 2011, 27(1):37-44. doi:10.1159/000325203.
pmid: 21325820 |
[37] | Kaku Y, Tsuchiya A, Kanno T, et al. HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28 human gastric cancer cells in association with AMID accumulation in the nucleus. Anticancer Agents Med Chem, 2015, 15(2):242-247. doi:10.2174/1871520614666140922122700. |
[38] | Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Cent Sci, 2020, 6(1):41-53. doi:10.1021/acscentsci.9b01063. |
[39] | Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol, 2020, 16(12):1351-1360. doi:10.1038/s41589-020-0613-y. |
[40] | Yuan H, Li X, Zhang X, et al. Identification of ACSL 4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun, 2016, 478(3):1338-1343. doi:10.1016/j.bbrc.2016.08.124. |
[41] |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol, 2017, 13(1):91-98. doi:10.1038/nchembio.2239.
pmid: 27842070 |
[42] |
Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol, 2017, 13(1):81-90. doi:10.1038/nchembio.2238.
pmid: 27842066 |
[43] |
Dixon SJ, Winter GE, Musavi LS, et al. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chem Biol, 2015, 10(7):1604-1609. doi:10.1021/acschembio.5b00245.
pmid: 25965523 |
[44] | Dawi J, Affa S, Kafaja K, et al. The Role of Ferroptosis and Cuproptosis in Tuberculosis Pathogenesis: Implications for Therapeutic Strategies. Curr Issues Mol Biol, 2025, 47(2):99. doi:10.3390/cimb47020099. |
[45] | Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med, 2019, 216(3):556-570. doi:10.1084/jem.20181776. |
[46] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 2017, 171(2):273-285. doi:10.1016/j.cell.2017.09.021.
pmid: 28985560 |
[47] | Li Y, Ma J, Wang C, et al. Ferroptosis: A potential target of macrophages in plaque vulnerability. Open Life Sci, 2023, 18(1):20220722. doi:10.1515/biol-2022-0722. |
[48] | Li J, Li L, Zhang Z, et al. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol, 2023, 14:1294317. doi:10.3389/fimmu.2023.1294317. |
[49] |
Marinho FV, Benmerzoug S, Rose S, et al. The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against Mycobacterium tuberculosis Infection. J Innate Immun, 2018, 10(3):239-252. doi:10.1159/000488952.
pmid: 29791904 |
[50] |
Wufuer D, Li Y, Aierken H, et al. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res, 2023, 28(1):445. doi:10.1186/s40001-023-01371-5.
pmid: 37853432 |
[51] | Wang J, Cao H, Xie Y, et al. Mycobacterium tuberculosis infection induces a novel type of cell death: Ferroptosis. Biomed Pharmacother, 2024, 177:117030. doi:10.1016/j.biopha.2024.117030. |
[52] |
Rockwood N, Costa DL, Amaral EP, et al. Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes. Front Immunol, 2017, 8:542. doi:10.3389/fimmu.2017.00542.
pmid: 28553288 |
[53] | Yang S, Ouyang J, Lu Y, et al. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol, 2022, 13:842858. doi:10.3389/fimmu.2022.842858. |
[54] | Andrade BB, Pavan Kumar N, Mayer-Barber KD, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One, 2013, 8(5):e62618. doi:10.1371/journal.pone.0062618. |
[55] | Liang T, Chen J, Xu G, et al. Ferroptosis-related gene SOCS1, a marker for tuberculosis diagnosis and treatment, involves in macrophage polarization and facilitates bone destruction in tuberculosis. Tuberculosis (Edinb), 2022, 132:102140. doi:10.1016/j.tube.2021.102140. |
[56] | Amaral EP, Namasivayam S, Queiroz ATL, et al. BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility. Nat Microbiol, 2024, 9(1):120-135. doi:10.1038/s41564-023-01523-7. |
[57] |
Moreira-Teixeira L, Tabone O, Graham CM, et al. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat Immunol, 2020, 21(4):464-476. doi:10.1038/s41590-020-0610-z.
pmid: 32205882 |
[58] |
Ma R, Fang L, Chen L, et al. Ferroptotic stress promotes macrophages against intracellular bacteria. Theranostics, 2022, 12(5):2266-2289. doi:10.7150/thno.66663.
pmid: 35265210 |
[59] | Liu M, Kong N, Zhang G, et al. The critical role of ferritinophagy in human disease. Front Pharmacol, 2022, 13:933732. doi:10.3389/fphar.2022.933732. |
[60] |
Bellelli R, Federico G, Matte’ A, et al. NCOA4 Deficiency Impairs Systemic Iron Homeostasis. Cell Rep, 2016, 14(3):411-421. doi:10.3389/fphar.2022.933732.
pmid: 26776506 |
[61] |
Yao X, Zhang Y, Hao J, et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res, 2019, 14(3):532-541. doi:10.4103/1673-5374.245480.
pmid: 30539824 |
[62] | Cronje L, Edmondson N, Eisenach KD, et al. Iron and iron chelating agents modulate Mycobacterium tuberculosis growth and monocyte-macrophage viability and effector functions. FEMS Immunol Med Microbiol, 2005, 45(2):103-112. doi:10.1016/j.femsim.2005.02.007. |
[63] | Phelan JJ, McQuaid K, Kenny C, et al. Desferrioxamine Supports Metabolic Function in Primary Human Macrophages Infected With Mycobacterium tuberculosis. Front Immunol, 2020, 11:836. doi:10.3389/fimmu.2020.00836. |
[64] | Huang C, Guo Y, Li T, et al. Pharmacological activation of GPX4 ameliorates doxorubicin-induced cardiomyopathy. Redox Biol, 2024, 70:103024. doi:10.1016/j.redox.2023.103024. |
[65] | Horonchik L, Wessling-Resnick M. The small-molecule iron transport inhibitor ferristatin/NSC306711 promotes degradation of the transferrin receptor. Chem Biol, 2008, 15(7):647-653. doi:10.1016/j.chembiol.2008.05.011. |
[66] |
Scarpellini C, Klejborowska G, Lanthier C, et al. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci, 2023, 44(12):902-916. doi:10.1016/j.tips.2023.08.012.
pmid: 37770317 |
[67] | Amaral EP, Foreman TW, Namasivayam S, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med, 2022, 219(11):e20220504. doi:10.1084/jem.20220504. |
[68] | Pedre B, Barayeu U, Ezerina D, et al. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species. Pharmacol Ther, 2021, 228:107916. doi:10.1016/j.pharmthera.2021.107916. |
[69] |
Amaral EP, Namasivayam S. Emerging Role for Ferroptosis in Infectious Diseases. Adv Exp Med Biol, 2021, 1301:59-79. doi:10.1007/978-3-030-62026-4_5.
pmid: 34370288 |
[1] | 田琦, 李春杨. 抗病毒联合抗结核药物治疗艾滋病合并肺结核的临床疗效观察[J]. 中国防痨杂志, 2025, 47(S1): 9-11. |
[2] | 沈初. 柴胡桂枝汤治疗因非小细胞肺癌化疗所致肝损伤患者的效果研究[J]. 中国防痨杂志, 2025, 47(S1): 208-211. |
[3] | 杨洁, 贾如. 胸部皮肤病变与肺结核的关联性研究进展[J]. 中国防痨杂志, 2025, 47(S1): 393-395. |
[4] | 王琳, 屈妍. 多重耐药菌医院感染防控研究进展[J]. 中国防痨杂志, 2025, 47(9): 1196-1203. |
[5] | 赖晓宇, 段鸿飞, 陈珣珣, 郭卉欣, 廖庆华, 陈茜, 梁丹. 结核性葡萄膜炎临床特征、诊断策略与分级标准研究进展[J]. 中国防痨杂志, 2025, 47(9): 1204-1211. |
[6] | 王慧娟, 程瑞霞, 许佳. 肺结核患者服药依从性研究进展[J]. 中国防痨杂志, 2025, 47(9): 1212-1219. |
[7] | 朱庆东, 赵春艳, 谢周华, 宋树林, 宋畅. 基于人工智能的CT影像组学在结核病诊断和治疗反应监测中应用的研究进展[J]. 中国防痨杂志, 2025, 47(8): 1068-1076. |
[8] | 孟庆琳, 王云霞, 唐艳, 刘二勇. 国内外结核病患者心理支持现状分析[J]. 中国防痨杂志, 2025, 47(8): 981-985. |
[9] | 刘毅萍, 林友飞, 陈晓红, 潘建光. 一例易被误诊的Castleman肺病并文献复习[J]. 中国防痨杂志, 2025, 47(7): 921-929. |
[10] | 王煜童, 刘宇红, 李亮. 抗结核药物引起的精神心理不良反应研究进展[J]. 中国防痨杂志, 2025, 47(7): 947-953. |
[11] | 李龙芬, 施春晶, 罗云, 张华杰, 刘俊, 王戈, 赵雁红, 袁丽娟, 李珊, 李文明, 沈凌筠. 基于机器学习建立HIV感染并发非结核分枝杆菌病的预测模型与验证[J]. 中国防痨杂志, 2025, 47(6): 708-718. |
[12] | 齐琦, 王子豪, 叶琳琳, 彭文贝, 周琼. 免疫检查点抑制剂与结核病[J]. 中国防痨杂志, 2025, 47(6): 792-797. |
[13] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[14] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[15] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||