中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (8): 1068-1076.doi: 10.19982/j.issn.1000-6621.20250149
收稿日期:
2025-04-11
出版日期:
2025-08-10
发布日期:
2025-08-01
通信作者:
宋畅,Email: songchang2022@163.com
作者简介:
注:赵春艳与朱庆东对本研究具有同等贡献,为并列第一作者
基金资助:
Zhu Qingdong1, Zhao Chunyan1, Xie Zhouhua2, Song Shulin3, Song Chang1()
Received:
2025-04-11
Online:
2025-08-10
Published:
2025-08-01
Contact:
Song Chang, Email: songchang2022@163.com
Supported by:
摘要:
近年来,影像组学模型通过融合临床特征与深度学习技术,可有效区分肺结核与肺癌、非结核分枝杆菌肺病及社区获得性肺炎等,在肺结核鉴别诊断中表现优异,显著优于传统影像评估,尤其可为诊断困难、样本获取受限的肺外结核(如肠结核、淋巴结结核)提供强有力的无创诊断工具。其构建的多模态融合模型不仅在鉴别肠结核与克罗恩病、淋巴结结核与淋巴瘤等方面展现出较高的精度,还在耐药结核病的预测及治疗反应的动态监测中显示出重要的潜力,在结核病诊疗中展现出广阔前景。但受限于数据集质量参差不齐、模型泛化能力有限、临床验证不足等问题,影像组学模型在结核病诊疗中仍面临着严峻挑战。本文通过深入分析文献发现,系统综述了人工智能(artificial intelligence, AI)驱动的计算机断层扫描(computed tomography, CT)影像组学技术在结核病(含肺结核及肺外结核)诊断及治疗反应监测中的最新研究进展与应用价值,聚焦于多模态融合技术与临床落地场景的创新分析,为指引未来的研究方向、进一步推动其在结核病诊疗中的应用与发展、助力结核病精准医疗和防控工作提供借鉴。
中图分类号:
朱庆东, 赵春艳, 谢周华, 宋树林, 宋畅. 基于人工智能的CT影像组学在结核病诊断和治疗反应监测中应用的研究进展[J]. 中国防痨杂志, 2025, 47(8): 1068-1076. doi: 10.19982/j.issn.1000-6621.20250149
Zhu Qingdong, Zhao Chunyan, Xie Zhouhua, Song Shulin, Song Chang. Research progress on the application of artificial intelligence-based CT radiomics in the diagnosis and treatment response monitoring of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1068-1076. doi: 10.19982/j.issn.1000-6621.20250149
[1] | 赵春艳, 宋畅, 宋树林, 等. 纳米孔测序检测痰液样本在肺结核诊断中的应用. 中国临床医生杂志, 2024, 52(4): 413-416. doi:10.3969/j.issn.2095-8552.2024.04.009. |
[2] | Song C, Zhao C, Nong Y, et al. Exploring the accuracy of third-generation Nanopore Sequencing technology for detecting Mycobacterium tuberculosis in patients with diabetes mellitus. Diagn Microbiol Infect Dis, 2024, 110(1): 116392. doi:10.1016/j.diagmicrobio.2024.116392. |
[3] | Linsen S, Kamoun A, Gunda A, et al. A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia. PLoS Digital Health, 2025, 4(1): e0000535. doi:10.1371/journal.pdig.0000535. |
[4] | Macpherson L, Kik SV, Quartagno M, et al. Diagnostic Accuracy of Chest X-ray Computer-Aided Detection Software for Detection of Prevalent and Incident Tuberculosis in Household Contacts. Clin Infect Dis, 2025, 80(3): 626-636. doi:10.1093/cid/ciae528. |
[5] |
Brown M, Browning P, Wahi-Anwar MW, et al. Integration of Chest CT CAD into the Clinical Workflow and Impact on Radiologist Efficiency. Acad Radiol, 2019, 26(5): 626-631. doi:10.1016/j.acra.2018.07.006.
pmid: 30097402 |
[6] | Hwang EJ, Jeong WG, David PM, et al. AI for Detection of Tuberculosis: Implications for Global Health. Radiol Artif Intell, 2024, 6(2):e230327. doi:10.1148/ryai.230327. |
[7] | Bortolotto C, Lancia A, Stelitano C, et al. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther, 2021, 21(3): 257-266. doi:10.1080/14737140.2021.1852935. |
[8] | Liang S, Ma J, Wang G, et al. The Application of Artificial Intelligence in the Diagnosis and Drug Resistance Prediction of Pulmonary Tuberculosis. Front Med (Lausanne), 2022, 9: 935080. doi:10.3389/fmed.2022.935080. |
[9] | Russo L, Charles-Davies D, Bottazzi S, et al. Radiomics for clinical decision support in radiation oncology. Clin Oncol (R Coll Radiol), 2024, 36(8): e269-e281. doi:10.1016/j.clon.2024.03.003. |
[10] | 沙敏, 朱卫东, 金亦凡, 等. 伴肺组织肉芽肿性炎的肺结核与肺结节病多维度鉴别诊断研究. 结核与肺部疾病杂志, 2024, 5(2): 135-142. doi:10.19983/j.issn.2096-8493.2024026. |
[11] | 黎惠如, 方伟军, 刘曾维, 等. CT在单发结节或肿块型肺结核和肺癌鉴别中的作用研究. 新发传染病电子杂志, 2021, 6(4): 323-326. doi:10.19871/j.cnki.xfcrbzz.2021.04.013. |
[12] | 程明远. 基于薄层CT影像组学模型对于空洞型肺癌与空洞型肺结核的相关性研究. 南昌:南昌大学, 2022. doi:10.27232/d.cnki.gnchu.2022.000934. |
[13] |
Du D, Gu J, Chen X, et al. Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer. Mol Imaging Biol, 2021, 23(2):287-298. doi:10.1007/s11307-020-01550-4.
pmid: 33030709 |
[14] |
Wei S, Shi B, Zhang J, et al. Differentiating mass-like tuberculosis from lung cancer based on radiomics and CT features. Transl Cancer Res, 2021, 10(10): 4454-4463. doi:10.21037/tcr-21-1719.
pmid: 35116302 |
[15] |
Tan H, Wang Y, Jiang Y, et al. A study on the differential of solid lung adenocarcinoma and tuberculous granuloma nodules in CT images by Radiomics machine learning. Sci Rep, 2023, 13(1):5853. doi:10.1038/s41598-023-32979-6.
pmid: 37041262 |
[16] |
Li Y, Lyu B, Wang R, et al. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer, 2024, 15(6): 466-476. doi:10.1111/1759-7714.15216.
pmid: 38191149 |
[17] | Yang L, Jiang Z, Tong J, et al. Development and validation of a preoperative CT-based radiomics nomogram to differentiate tuberculosis granulomas from lung adenocarcinomas: an external validation study. BMC Cancer, 2024, 24(1): 670. doi:10.1186/s12885-024-12422-3. |
[18] | Zhao W, Xiong Z, Jiang Y, et al. Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol, 2023, 149(7): 3395-3408. doi:10.1007/s00432-022-04256-y. |
[19] | Bao X, Peng Q, Bian D, et al. Short-term intra- and peri-tumoral spatiotemporal CT radiomics for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Eur Radiol, 2025, 13(1):5853. doi:10.1007/s00330-025-11563-8. |
[20] |
Cui EN, Yu T, Shang SJ, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World J Clin Cases, 2020, 8(21): 5203-5212. doi:10.12998/wjcc.v8.i21.5203.
pmid: 33269256 |
[21] | Song C, Zhao CY, Song SL, et al. Differentiating Lung Adenocarcinoma from Tuberculous Nodules in HIV/AIDS Patients Using Preoperative CT-Based Intratumoral and Peritumoral Radiomics Combined with Clinical Features. J Multidiscip Healthc, 2025, 18: 2693-2706. doi:10.2147/JMDH.S524527. |
[22] | Keicher M, Burwinkel H, Bani-Harouni D, et al. Multimodal graph attention network for COVID-19 outcome prediction. Sci Rep, 2023, 13(1): 19539. doi:10.1038/s41598-023-46625-8. |
[23] | Liu J, Wang H, Shan X, et al. Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT. BMC Med Imaging, 2024, 24(1): 62. doi:10.1186/s12880-024-01240-5. |
[24] | Zhang X, Dong X, Saripan MIB, et al. Deep learning PET/CT-based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer. Thorac Cancer, 2023, 14(19): 1802-1811. doi:10.1111/1759-7714.14924. |
[25] | Gopalaswamy R, Shanmugam S, Mondal R, et al. Of tuberculosis and non-tuberculous mycobacterial infections-a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci, 2020, 27(1): 74. doi:10.1186/s12929-020-00667-6. |
[26] | Yan Q, Zhao W, Kong H, et al. CT-based radiomics analysis of consolidation characteristics in differentiating pulmonary disease of non-tuberculous mycobacterium from pulmonary tuberculosis. Exp Ther Med, 2024, 27(3): 112. doi:10.3892/etm.2024.12400. |
[27] | Zhou L, Wang Y, Zhu W, et al. A retrospective study diffe-rentiating nontuberculous mycobacterial pulmonary disease from pulmonary tuberculosis on computed tomography using radiomics and machine learning algorithms. Ann Med, 2024, 56(1): 2401613. doi:10.1080/07853890.2024.2401613. |
[28] | 姚阳阳, 梁长华, 韩东明, 等. 基于CT影像组学结合临床特征鉴别肺结核与非结核分枝杆菌肺病的研究. 中国防痨杂志, 2024, 46(3): 302-310. doi:10.19982/j.issn.1000-6621.20230337. |
[29] | 沈洁, 余敏林, 金晓梅, 等. 全肺CT影像组学联合临床及常规CT特征鉴别非结核分枝杆菌肺病与肺结核. 中国介入影像与治疗学, 2025, 22(1): 16-21. doi:10.13929/j.issn.1672-8475.2025.01.004. |
[30] | Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4293-4306. doi:10.1007/s00259-021-05432-x. |
[31] | Vaughn VM, Dickson RP, Horowitz JK, et al. Community-Acquired Pneumonia: A Review. JAMA, 2024, 332(15): 1282-1295. doi:10.1001/jama.2024.14796. |
[32] | Wang B, Li M, Ma H, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC Med Imaging, 2019, 19(1): 63. doi:10.1186/s12880-019-0355-z. |
[33] | Li P, Wang J, Tang M, et al. A CT-based radiomics predictive nomogram to identify pulmonary tuberculosis from community-acquired pneumonia: a multicenter cohort study. Front Cell Infect Microbiol, 2024, 14: 1388991. doi:10.3389/fcimb.2024.1388991. |
[34] | Zhao W, Xiong Z, Tian D, et al. The adding value of contrast-enhanced CT radiomics: Differentiating tuberculosis from non-tuberculous infectious lesions presenting as solid pulmonary nodules or masses. Front Public Health, 2022, 10: 1018527. doi:10.3389/fpubh.2022.1018527. |
[35] | 樊梦思, 赵红, 曹捍波, 等. 基于CT平扫影像组学模型鉴别结节/肿块型肺隐球菌病及肺腺癌与肺结核. 中国医学影像技术, 2020, 36(6): 853-857. doi:10.13929/j.issn.1003-3289.2020.06.011. |
[36] |
Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109.
pmid: 31697616 |
[37] |
Norbis L, Alagna R, Tortoli E, et al. Challenges and perspectives in the diagnosis of extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2014, 12(5):633-647. doi:10.1586/14787210.2014.899900.
pmid: 24717112 |
[38] | Shu Y, Chen Z, Chi J, et al. A Machine Learning Method for Differentiation Crohn’s Disease and Intestinal Tuberculosis. J Multidiscip Healthc, 2024, 17: 3835-3847. doi:10.2147/JMDH.S470429. |
[39] | Zhu C, Yu Y, Wang S, et al. A Novel Clinical Radiomics Nomogram to Identify Crohn’s Disease from Intestinal Tuberculosis. J Inflamm Res, 2021, 14: 6511-6521. doi:10.2147/JIR.S344563. |
[40] | Gong T, Li M, Pu H, et al. Computed tomography enterography-based multiregional radiomics model for differential diagnosis of Crohn’s disease from intestinal tuberculosis. Abdom Radiol (NY), 2023, 48(6): 1900-1910. doi:10.1007/s00261-023-03889-y. |
[41] | Cheng M, Zhang H, Huang W, et al. Deep Learning Radiomics Analysis of CT Imaging for Differentiating Between Crohn’s Disease and Intestinal Tuberculosis. J Imaging Inform Med, 2024, 37(4): 1516-1528. doi:10.1007/s10278-024-01059-0. |
[42] | 陈新, 唐晨虎, 姜加学, 等. 颈部淋巴瘤与淋巴结结核CT平扫图像影像组学鉴别可行性研究. 医学研究与战创伤救治, 2023, 36(1): 64-68. doi:10.16571/j.cnki.2097-2768.2023.01.012. |
[43] | Shen MT, Liu X, Gao Y, et al. Radiomics-based quantitative contrast-enhanced CT analysis of abdominal lymphadenopathy to differentiate tuberculosis from lymphoma. Precis Clin Med, 2024, 7(1): pbae002. doi:10.1093/pcmedi/pbae002. |
[44] | Zhang R, Xu Y, Gao S, et al. Observer- and radiomics model-based computed tomography classification of suppurative versus tuberculous lymphadenitis complicated with nodal necrosis of the neck in children. Precis Clin Med, 2023, 53(13): 2586-2596. doi:10.1007/s00247-023-05761-z. |
[45] | Al Bulushi Y, Saint-Martin C, Muthukrishnan N, et al. Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis. Sci Rep, 2022, 12(1): 2962. doi:10.1038/s41598-022-06884-3. |
[46] | Song C, Zhao CY, Li K, et al. A 2.5D transfer deep learning model based on artificial intelligence for differentiating lymphoma and tuberculous lymphadenitis in HIV/AIDS patients. J Infect, 2025, 90(3): 106439. doi:10.1016/j.jinf.2025.106439. |
[47] |
Ma Q, Yi Y, Liu T, et al. MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study. Eur Radiol, 2022, 32(12): 8659-8669. doi:10.1007/s00330-022-08911-3.
pmid: 35748898 |
[48] | Wang W, Fan Z, Zhen J. MRI radiomics-based evaluation of tuberculous and brucella spondylitis. J Int Med Res, 2023, 51(8): 3000605231195156. doi:10.1177/03000605231195156. |
[49] | Farhat M, Cox H, Ghanem M, et al. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol, 2024, 22(10): 617-635. doi:10.1038/s41579-024-01025-1. |
[50] | Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health, 2023, 11: 1206056. doi:10.3389/fpubh.2023.1206056. |
[51] | Li Y, Wang B, Wen L, et al. Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study. Eur Radiol, 2023, 33(1): 391-400. doi:10.1007/s00330-022-08997-9. |
[52] |
Li Y, Xu Z, Lv X, et al. Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study. Eur Radiol, 2023, 33(9): 6308-6317. doi:10.1007/s00330-023-09589-x.
pmid: 37004571 |
[53] | Jiang F, Xu C, Wang Y, et al. A CT-based radiomics analyses for differentiating drug-resistant and drug-sensitive pulmonary tuberculosis. BMC Med Imaging, 2024, 24(1): 307. doi:10.1186/s12880-024-01481-4. |
[54] | Sultana ZZ, Hoque FU, Beyene J, et al. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis, 2021, 21(1): 51. doi:10.1186/s12879-020-05749-2. |
[55] | Song C, Huang A, Zhao C, et al. Multimodal radiomics integrating deep learning and clinical features for diagnosing multidrug-resistant tuberculosis in HIV/AIDS patients. J Glob Antimicrob Resist, 2025, 43: 134-142. doi:10.1016/j.jgar.2025.04.013. |
[56] |
Lv X, Li Y, Cai B, et al. Utility of Machine Learning and Radiomics Based on Cavity for Predicting the Therapeutic Response of MDR-TB. Infect Drug Resist, 2023, 16: 6893-6904. doi:10.2147/IDR.S435984.
pmid: 37920476 |
[57] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169: 111180. doi:10.1016/j.ejrad.2023.111180. |
[58] | Nardone V, Reginelli A, Rubini D, et al. Delta radiomics: an updated systematic review. Radiol Med, 2024, 129(8): 1197-1214. doi:10.1007/s11547-024-01853-4. |
[1] | 杜润泽, 艾尔帕提·玉素甫, 董士铭, 徐韬, 蔡晓宇, 王婷, 牙克甫·阿卜力孜, 盛伟斌, 买尔旦·买买提. Lasso-logistic回归在感染性脊柱炎鉴别诊断中的应用[J]. 中国防痨杂志, 2025, 47(S1): 1-4. |
[2] | 尹相玉, 李金星, 马刚, 刘文玉, 蔡继飞. 超声引导下胸膜活检联合Xpert MTB/RIF对结核性胸膜炎的诊断价值[J]. 中国防痨杂志, 2025, 47(S1): 5-8. |
[3] | 田琦, 李春杨. 抗病毒联合抗结核药物治疗艾滋病合并肺结核的临床疗效观察[J]. 中国防痨杂志, 2025, 47(S1): 9-11. |
[4] | 王泉, 古丽比克·木拉提, 陈清波, 张亚丽, 许苗, 杨婷, 常炜, 李媛媛, 马瑞瑛. 新疆维吾尔自治区结核分枝杆菌基因型多样性及其耐药特征研究[J]. 中国防痨杂志, 2025, 47(S1): 12-16. |
[5] | 刘敏, 祁丹, 石峰, 李兵, 郝瑞霞, 王东, 白俊. ARIMA-SVM组合模型在肺结核发病预测中的应用[J]. 中国防痨杂志, 2025, 47(S1): 21-25. |
[6] | 李雅惠, 刘珂伟, 戈启萍, 杨晓丽, 王慧芳. 四例煤工尘肺合并非结核分枝杆菌感染临床特点分析[J]. 中国防痨杂志, 2025, 47(S1): 26-30. |
[7] | 王泉, 马瑞瑛, 杨婷, 张亚丽, 古丽比克·木拉提. 新疆地区非结核分枝杆菌感染流行性及风险因素研究[J]. 中国防痨杂志, 2025, 47(S1): 31-35. |
[8] | 李春晶, 李莉, 梁雪薇, 袁嘉瑞, 林静. CT三维重建在骨结核术后效果评估中的价值研究[J]. 中国防痨杂志, 2025, 47(S1): 47-49. |
[9] | 申福国, 杨钰, 孔维丽, 石寒冰, 姜云飞, 于霁. 气管涂层支架的生物相容性及抗结核分枝杆菌性能研究[J]. 中国防痨杂志, 2025, 47(S1): 66-68. |
[10] | 刘燕, 高海恋, 孙丰珍. 淄博市第一医院非结核分枝杆菌病患者菌种分布情况研究[J]. 中国防痨杂志, 2025, 47(S1): 69-70. |
[11] | 周巍, 任鑫. 探讨多层螺旋CT在肺结核诊断和鉴别诊断中的临床应用价值[J]. 中国防痨杂志, 2025, 47(S1): 71-73. |
[12] | 卢继永. 青年女性肺结核患者抗结核治疗前后性激素水平变化规律分析[J]. 中国防痨杂志, 2025, 47(S1): 90-92. |
[13] | 杨景云, 熊媛, 雷霖涵, 赵省婷, 赵得荣, 苏艳, 徐根深, 胡加耀. 增强T2 FLAIR在儿童结核性脑膜炎中的诊断价值研究[J]. 中国防痨杂志, 2025, 47(S1): 93-95. |
[14] | 何成, 刘阳, 廖庆峰, 简佳庆, 付小刚, 简勇. 电子支气管镜下冷冻联合药物治疗肉芽增殖型支气管结核的疗效分析[J]. 中国防痨杂志, 2025, 47(S1): 134-137. |
[15] | 暴建萍. 二维高频超声对颈部淋巴结结核的诊断价值评价[J]. 中国防痨杂志, 2025, 47(S1): 141-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||