Email Alert | RSS    帮助

中国防痨杂志 ›› 2019, Vol. 41 ›› Issue (9): 936-945.doi: 10.3969/j.issn.1000-6621.2019.09.006

• 论著 • 上一篇    下一篇

封闭社区结核病患者接触者结核感染状况预测模型

房宏霞(),章光荣,秦玉宝,解志民,赖铿,黄成章,王艳,何文龙,郑开巧,肖之凯,刘昌伟,梁健平,陈智聪   

  1. 518110 广东省深圳市龙华区慢性病防治中心结核病防治科(房宏霞、王艳、郑开巧),门诊部(秦玉宝),中心主任办公室(刘昌伟、陈智聪);深圳市司法局第二强制隔离戒毒所门诊部(章光荣、解志民、黄成章、何文龙、肖之凯、梁健平);广州市胸科医院结核病控制管理科(赖铿)
  • 收稿日期:2019-08-06 出版日期:2019-09-10 发布日期:2019-09-06
  • 通信作者: 房宏霞 E-mail:fanghongxia1@163.com
  • 基金资助:
    深圳市科技计划项目(JCYZ20160429100449928)

Prediction models for latent tuberculosis infection among contacts of tuberculosis patients in an institutionalized population

Hong-xia FANG(),Guang-rong ZHANG,Yu-bao QIN,Zhi-min XIE,Keng LAI,Cheng-zhang HUANG,Yan WANG,Wen-long HE,Kai-qiao ZHENG,Zhi-kai XIAO,Chang-wei LIU,Jian-ping LIANG,Zhi-cong CHEN   

  1. *Department of Tuberculosis Prevention and Control, Shenzhen Longhua Center for Chronic Disease Control, Guangdong Province, Shenzhen 518110, China
  • Received:2019-08-06 Online:2019-09-10 Published:2019-09-06
  • Contact: Hong-xia FANG E-mail:fanghongxia1@163.com

摘要:

目的 通过监测封闭社区(强制隔离戒毒所)中结核病患者接触者的结核感染状况,分析影响接触者结核感染的可能因素,并构建感染预测模型。方法 采用结核菌素皮肤试验(TST),对封闭社区中2016年10月至2018年11月确诊的13例结核病患者的所有接触者,每6个月进行一次TST,至2019年7月。依据《WS 288—2017 肺结核诊断》相关标准,有卡介苗接种卡痕者硬结平均直径≥10mm、无卡痕者硬结平均直径≥5mm判断为结核病患者接触者(以下简称“接触者”)结核感染。在考虑场所特征(吸毒时间、戒毒次数、首次入本戒毒所)和不考虑场所特征情况下,分别采用Cox回归、条件logistic回归法对年龄、体质量指数(BMI)值、卡介苗接种史、既往结核病史、肺结核可疑症状、接触程度、接触患者分类因素构建感染预测模型,比较各模型对结核感染预测情况及预测值计算的ROC曲线下面积,寻找最优感染预测模型。结果 研究期间共纳入13例结核病患者,以及合格完成TST的检查对象2062名。接触者首次TST阳性而判断为结核感染者1060例,感染率为51.4%(1060/2062)。在后续2年的结核感染监测中,1002名第一次检查未感染者中有267例(26.6%,267/1002)接触者变为感染,其中173例(64.8%,173/267)是在封闭社区中出现新结核病患者后转变为结核感染;2年中社区接触者结核感染者共1327例,感染率64.4%(1327/2062)。使用logistic回归分析,在考虑场所特征情况下,纳入10个因素建立的封闭社区接触者结核感染预测模型为:结核感染=0.041×年龄+0.373×接触程度+0.046×BMI+0.028×吸毒年限-2.285;在不考虑场所特征情况下,纳入7个因素建立的预测模型为:结核感染=0.050×年龄+0.372×接触程度+0.041×BMI-2.282,ROC曲线下面积分别为0.584(95%CI:0.558~0.609)、0.625(95%CI:0.600~0.650),P值均<0.001;对结核感染预测准确率为93.6%(1242/1327)和94.1%(1249/1327)。使用Cox回归分析,在考虑场所特征情况下,建立的结核感染预测模型为:结核感染=0.020×年龄+0.133×接触程度+0.030×BMI+0.013×吸毒年限,ROC曲线下面积为0.633(95%CI:0.608~0.658),P<0.001;不考虑场所特征,建立的预测模型为:结核感染=0.025×年龄+0.135×接触程度+0.028×BMI,ROC曲线下面积为0.625(95%CI:0.600~0.650),P<0.001。结论 不考虑场所特征情况下,封闭社区结核病患者接触者结核感染预测中要考虑的因素包括年龄、BMI值、接触程度,使用两种建模方法的效果接近;如果考虑场所特征,需考虑的因素要增加吸毒年限。在能获得社区接触者随访时间的情况下,使用Cox回归预测效果更好。本研究对封闭社区接触者结核感染预测准确率较高,但尚不完善,亟需探索更多可能的影响因素。

关键词: 结核,肺, 接触者追踪, 结核菌素试验, 潜伏性结核病, 人群监测, 模型,统计学, 预测, 吸毒人群

Abstract:

Objective To understand the prevalence of latent tuberculosis infection (LTBI) among TB contacts who were institutionalized for drugs in a compulsory detoxification centers; further, to analyze the factors associated with risks of TB infection and establish predictive models for LTBI.Methods A total of 13 TB cases were detected during October 2016 to November 2018. Tuberculosis skin test (TST) for TB infection were provided to all the institutionalized persons who had contacted the TB cases at the same period. Follow-up TSTs were given every 6 months to these contacts for two years until July 2019. TST positivity was defined as an induration ≥10 mm for BCG-vaccinated (with a BCG scar), or ≥5 mm for people without a BCG scar, according to the WS 288-2017 for diagnosis of tuberculosis. Prevalence of LTBI were measured. Cox regression and conditional logistic regression were applied to develop risk prediction models with and without site characteristics (drug-using time, frequency of detoxification, and no previous admission to the detoxification centers). Independent variables include age, BMI, BCG vaccination history, tuberculosis history, suspected symptoms of TB, contact degree and contacts with etiology-positive patients. Model performances were evaluated based on the area under the ROC curve (AUC) to find the optimal predictive model.Results This study included 2062 eligible subjects who had accepted TST and had contacted the 13 TB cases at the same period in detoxification centers. The prevalence of LTBI at the first TST examination was 51.4% (1060/2062). During the follow-up, another 267 contacts who were negative at first became TST positive, led to an 26.6% (267/1002) increment. Furthermore, 173 cases (64.8%, 173/267) had a TST positive conversion after those new TB cases were diagnosed in detoxification centers. In total, the 2-year positivity was 64.4% (1327/2062). Using logistic regression, if the site characteristics were adapted, the model showed that TB infection risk=0.041×age+0.373×exposure degree+0.046×BMI+0.028×drug-using time -2.285; if not, the model was that TB infection risk=0.050×age+0.372×contact degree+0.041×BMI-2.282. The AUC of these two models were 0.584 (95%CI: 0.558-0.609) and 0.625 (95%CI: 0.600-0.650), P<0.001. The predictive accuracy of TB infection were 93.6% (1242/1327) and 94.1% (1249/1327), respectively. Using Cox regression, with the site characteristics, the model was presented as that TB infection risk=0.020×age+0.133×contact degree+0.030×BMI+0.013×drug-using time, the AUC of which was 0.633 (95%CI: 0.608-0.658), P<0.001; without site characteristics, the predictive model was that TB infection risk=0.025×age+0.135×contact degree+0.028×BMI, the AUC of which was 0.625 (95%CI: 0.600-0.650), P<0.001.Conclusion Three-factor models have been constructed without site characteristics, including age, BMI, and exposure degree. Cox regression and conditional logistic regression led to similar effects. Considering site characteristics, adding the drug-using time, Cox regression will be better if the follow-up time is available. These models have a high level of accuracy in predicting LTBI risk in institutionalized population, although more studies are needed to identify potential risk factors associated with TB infection.

Key words: Tuberculosis,pulmonary, Contact tracing, Tuberculin test, Latent tuberculosis, Population surveillance, Models,statistical, Forecasting, Drug users