中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (2): 239-244.doi: 10.19982/j.issn.1000-6621.20230377
收稿日期:
2023-10-19
出版日期:
2024-02-10
发布日期:
2024-01-30
通信作者:
潘丽萍
E-mail:panliping2006@163.com
基金资助:
Received:
2023-10-19
Online:
2024-02-10
Published:
2024-01-30
Contact:
Pan Liping
E-mail:panliping2006@163.com
Supported by:
摘要:
组织激肽释放酶(tissue kallikrein-related peptidase, KLK)家族是丝氨酸蛋白酶家族中一种具有胰蛋白酶或胰凝乳蛋白酶性质的蛋白水解酶亚群,有15个家族蛋白,分别为KLK1~KLK15。近年来,越来越多的研究表明,KLK家族可通过切割病毒和细菌关键蛋白、激活多种宿主受体、调控激肽系统等方式参与机体的多种生理活动,影响着病毒、细菌和真菌中多种病原微生物感染的进程,作用机制复杂且广泛。本文通过对近年来KLK家族蛋白在微生物感染中的作用和机制进行综述,以更好地探究KLK在微生物感染中的重要作用,特别是为其在结核分枝杆菌感染中的研究提供思路,也为KLK家族蛋白作为抗结核治疗靶点提供理论基础。
中图分类号:
尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. doi: 10.19982/j.issn.1000-6621.20230377
Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection[J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. doi: 10.19982/j.issn.1000-6621.20230377
表1
KLK家族基因在不同病原微生物感染中的作用
病原体 | KLK | 疾病 | 作用 | 机制 |
---|---|---|---|---|
病毒 | ||||
流感病毒 | KLK1、KLK5、 KLK12 | 流感 | 促进病毒感染细胞 | 裂解HA分子,并增强了病毒在细胞中的复制,从而增强了病毒的载量 |
人乳头瘤病毒 | KLK8 | 各种疣 | 促进病毒感染细胞 | 切割HPV主要衣壳蛋白L1,引起构象变化,使小衣壳蛋白L2暴露重要表位,促进病毒脱壳进入宿主细胞 |
冠状病毒 | KLK13 | 肺炎 | 促进病毒感染 | 裂解HCoV-HKU S蛋白的S1/S2区域促进病毒的感染 |
鼻病毒 | KLK1 | 气道炎症 | 加重气道炎症 | 促进气道中激肽生成 |
细菌 | ||||
结核分枝杆菌 | KLK1 | 结核病 | 区分潜伏感染和活动性结核病 | 可能通过调节宿主KKS系统和其他分子信号通路影响疾病进程 |
牛分枝杆菌 | KLK12 | 牛结核病 | 保护性免疫、区分潜伏感染和活动性结核病 | 通过mTOR/MAPK/TSC2和BAX/Bcl-2/Cytc/Caspase3通路调节自噬、凋亡和促炎症因子释放;诱导KLK12上调,与B1R/B2R相互作用,启动ERK信号通路,致MMP1和MMP9分子上调,在肉芽肿形成中起着重要作用 |
金黄色葡萄球菌 | KLK6、KLK13、 KLK14 | 特应性皮炎 | 使皮炎加重 | 降解角质形成细胞的桥粒芯糖蛋白-1(desmoglein-1, DSG-1)和中间丝蛋白 |
牙龈卟啉单胞菌 | KLK13 | 牙周炎 | 使牙周炎加重 | 降解KLK13抑制剂SPINK6 |
脑膜炎奈瑟菌 | KLK1 | 脑膜炎 | 干扰细菌定植 | KLK1裂解细菌表面NHBA抗原,干扰细菌定植 |
真菌 | ||||
念珠菌 | KLK1 | 肾损伤 | 保护肾脏 | KLK1激活的KKS系统在念珠菌感染中发挥保护肾脏的重要作用 |
[1] |
Shaw JL, Diamandis EP. Distribution of 15 Human Kallikreins in Tissues and Biological Fluids. Clin Chem, 2007, 53(8):1423-1432. doi:10.1373/clinchem.2007.088104.
URL pmid: 17573418 |
[2] | Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel), 2020, 13(9):215. doi:10.3390/ph13090215. |
[3] | Kalinska M, Meyer-Hoffert U, Kantyka T, et al. Kallikreins-The melting pot of activity and function. Biochimie, 2016, 122:270-282. doi:10.1016/j.biochi.2015.09.023. |
[4] |
Lundwall A, Brattsand M. Kallikrein-related peptidases. Cell Mol Life Sci, 2008, 65(13):2019-2038. doi:10.1007/s00018-008-8024-3.
URL pmid: 18344018 |
[5] |
Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014, 13(2):397-406. doi:10.1074/mcp.M113.035600.
URL pmid: 24309898 |
[6] |
Ehrenfeld P, Bhoola KD, Matus CE, et al. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil. Biol Chem, 2018, 399(9):925-935. doi:10.1515/hsz-2017-0338.
URL pmid: 29883315 |
[7] |
Mann K, Lipp B, Grunst J, et al. Determination of kallikrein by radioimmunoassay in human body fluids. Agents Actions, 1980, 10(4):329-334. doi:10.1007/BF01971434.
URL pmid: 6905640 |
[8] | Pantano E, Marchi S, Biagini M, et al. NHBA is processed by kallikrein from human saliva. PLoS One, 2019, 14(8):e203234. doi:10.1371/journal.pone.0203234. |
[9] | Magnen M, Gueugnon F, Guillon A, et al. Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs. Virol, 2017, 91(16):e00421-17. doi:10.1128/JVI.00421-17. |
[10] |
Maurer M, Bader M, Bas M, et al. New topics in bradykinin research. Allergy, 2011, 66(11):1397-1406. doi:10.1111/j.1398-9995.2011.02686.x.
URL pmid: 21859431 |
[11] |
Dong Y, Harrington BS, Adams MN, et al. Activation of membrane-bound proteins and receptor systems: a link between tissue kallikrein and the KLK-related peptidases. Biol Chem, 2014, 395(9):977-990. doi:10.1515/hsz-2014-0147.
URL pmid: 24854540 |
[12] | Ge P, Ross TM. Evolution of A (H1N1) pdm 09 influenza virus masking by glycosylation. Expert Rev Vaccines, 2021, 20(5):519-526. doi:10.1080/14760584.2021.1908135. |
[13] | Leu C, Yang M, Chung N, et al. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin. Antimicrob Agents Chemother, 2015, 59(9):5619-5630. doi:10.1128/AAC.00065-15. |
[14] |
Hamilton BS, Whittaker GR.Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12. J Biol Chem, 2013, 288(24):17399-17407. doi:10.1074/jbc.M112.440362.
URL pmid: 23612974 |
[15] |
Cerqueira C, Samperio VP, Vogeley C, et al. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. J Virol, 2015, 89(14):7038-7052. doi:10.1128/JVI.00234-15.
URL pmid: 25926655 |
[16] | Becker M, Greune L, Schmidt MA, et al. Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. J Virol, 2018, 92(11):e2106-e2117. doi:10.1128/JVI.02106-17. |
[17] | Milewska A, Falkowski K, Kulczycka M, et al. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci Signal, 2020, 13(659):a9902. doi:10.1126/scisignal.aba9902. |
[18] | Christiansen SC, Eddleston J, Bengtson SH, et al. Experimental rhinovirus infection increases human tissue kallikrein activation in allergic subjects. Int Arch Allergy Immunol, 2008, 147(4):299-304. doi:10.1159/000144037. |
[19] |
Naclerio RM, Proud D, Lichtenstein LM, et al. Kinins are generated during experimental rhinovirus colds. J Infect Dis, 1988, 157(1):133-142. doi:10.1093/infdis/157.1.133.
URL pmid: 2447198 |
[20] | Alikhani M, Javadi A, Aalikhani M. Des-Arg 9 bradykinin and bradykinin potentially trigger cytokine storm in patients with COVID-19. Iran J Immunol, 2021, 18(1):93-94. doi:10.22034/iji.2021.89684.1962. |
[21] | de Maat S, de Mast Q, Danser AH J, et al. Impaired Breakdown of Bradykinin and Its Metabolites as a Possible Cause for Pulmonary Edema in COVID-19 Infection. Semin Thromb Hemost, 2020, 46(7):835-837. doi:10.1055/s-0040-1712960. |
[22] | Ramani K, Garg AV, Jawale CV, et al. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney. PLoS Pathog, 2016, 12(11):e1005952. doi:10.1371/journal.ppat.1005952. |
[23] | Ramani K, Jawale CV, Verma AH, et al. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight, 2018, 3(9):e98241. doi:10.1172/jci.insight.98241. |
[24] | Qian X, Nguyen DTM, Li Y, et al. Predictive value of serum bradykinin and desArg9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series. Tuberculosis (Edinb), 2016, 101S:S109-S118. doi:10.1016/j.tube.2016.09.022. |
[25] | Rodrigues-Junior VS, Pail PB, Villela AD, et al. Effect of the bradykinin 1 receptor antagonist SSR240612 after oral adminis-tration in Mycobacterium tuberculosis-infected mice. Tubercu-losis (Edinb), 2018, 109:1-7. doi:10.1016/j.tube.2018.01.003. |
[26] | Pan L, Wei N, Jia H, et al. Genome-wide transcriptional profiling identifies potential signatures in discriminating active tuberculosis from latent infection. Oncotarget, 2017, 8(68):112907-112916. doi:10.18632/oncotarget.22889. |
[27] |
Mukai S, Fukushima T, Naka D, et al. Activation of hepatocyte growth factor activator zymogen (pro-HGFA) by human kallikrein 1-related peptidases. FEBS J, 2008, 275(5):1003-1017. doi:10.1111/j.1742-4658.2008.06265.x.
URL pmid: 18221492 |
[28] | Imaizumi T. Hepatocyte growth factor (HGF) in lung tuberculosis. Kekkaku, 1996, 71(10):587-589. |
[29] | He J, Fan Y, Shen D, et al. Characterization of cytokine profile to distinguish latent tuberculosis from active tuberculosis and healthy controls. Cytokine, 2020, 135:155218. doi:10.1016/j.cyto.2020.155218. |
[30] |
Higa F, Akamine M, Furugen M, et al. Hepatocyte growth factor levels in Legionella pneumonia: a retrospective study. BMC Infect Dis, 2011, 11:74. doi:10.1186/1471-2334-11-74.
URL pmid: 21429184 |
[31] |
Hedstrom L. Serine protease mechanism and specificity. Chem Rev, 2002, 102(12):4501-4524. doi:10.1021/cr000033x.
URL pmid: 12475199 |
[32] | Araujo Z, Macias-Segura N, Lopez-Ramos JE, et al. Diagnostic accuracy of combinations of serological biomarkers for identifying clinical tuberculosis. J Infect Dev Ctries, 2018, 12(6):429-441. doi:10.3855/jidc.9554. |
[33] |
Williams MR, Nakatsuji T, Sanford JA, et al. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J Invest Dermatol, 2017, 137(2):377-384. doi:10.1016/j.jid.2016.10.008.
URL pmid: 27765722 |
[34] |
Langer M, Duggan ES, Booth JL, et al. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function. Infect Immun, 2012, 80(12):4374-4387. doi:10.1128/IAI.01011-12.
URL pmid: 23027535 |
[35] |
Plaza K, Kalinska M, Bochenska O, et al. Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins. J Biol Chem, 2016, 291(36):18753-18764. doi:10.1074/jbc.M116.722942.
URL pmid: 27354280 |
[36] | Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev, 2023, 39(1):1-44. doi:10.1080/02648725.2022.2076031. |
[37] | Sabir N, Hussain T, Liao Y, et al. Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells, 2019, 8(5):415. doi:10.3390/cells8050415. |
[38] | Wang Y, Qu M, Liu Y, et al. KLK12 Regulates MMP-1 and MMP-9 via Bradykinin Receptors: Biomarkers for Differentiating Latent and Active Bovine Tuberculosis. Int J Mol Sci, 2022, 23(20):12257. doi:10.3390/ijms232012257. |
[39] | Srinivasan S, Kryza T, Batra J, et al. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. J Nat Rev Cancer, 2022, 22(4):223-238. doi:10.1038/s41568-021-00436-z. |
[40] | Fan B, Niu Y, Zhang A, et al. KLK4 Silencing Inhibits the Growth of Chromophobe Renal Cell Carcinoma through ERK/AKT Signaling Pathway. Kidney Blood Press Res, 2022, 47(12):702-710. doi:10.1159/000527412. |
[41] | Sun H, Li J, Wang Q, et al. Kallikrein-related peptidase-8 (KLK8) aggravated hypoxia-induced right ventricular hypertrophy by targeting P38 MAPK/P53 signaling pathway. Tissue Rell, 2022, 78:101874. doi:10.1016/j.tice.2022.101874. |
[42] | Li S, Garcia M, Gewiss RL, et al. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo. PLoS Genet, 2017, 13(4):e1006743. doi:10.1371/journal.pgen.1006743. |
[43] |
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycrobacterium tuberculosis Infection and Beyond. Front Immunol, 2016, 7:635. doi:10.3389/fimmu.2016.00635.
URL pmid: 28082976 |
[1] | 陈瑞麒, 张明五, 王伟, 陈松华, 柳正卫, 陈彬. 浙江省常山县农村老年人结核分枝杆菌潜伏感染情况及影响因素[J]. 中国防痨杂志, 2024, 46(4): 383-389. |
[2] | 尚雪恬, 董静, 黄麦玲, 孙琦, 贾红彦, 张蓝月, 刘秋月, 姚明旭, 王颖超, 姬秀秀, 杜博平, 邢爱英, 潘丽萍. 结核分枝杆菌潜伏感染者外周血单个核细胞转录组学研究[J]. 中国防痨杂志, 2024, 46(4): 449-460. |
[3] | 宋瑞雪, 姚明旭, 潘丽萍. 干扰素诱导蛋白10在呼吸道病原微生物感染诊断和疾病监测中的研究进展[J]. 中国防痨杂志, 2024, 46(4): 473-478. |
[4] | 姚阳阳, 梁长华, 韩东明, 崔俊伟, 潘犇, 王慧慧, 魏正琦, 甄思雨, 危涵羽. 基于CT影像组学结合临床特征鉴别肺结核与非结核分枝杆菌肺病的研究[J]. 中国防痨杂志, 2024, 46(3): 302-310. |
[5] | 张静, 付若楠, 王森路, 冯建宇, 张玲, 古丽娜·巴德尔汗, 祖力卡提阿衣·阿布都拉, 王新旗. 高负担地区肺结核密切接触者中结核分枝杆菌潜伏感染者预防性治疗接受意愿及影响因素研究[J]. 中国防痨杂志, 2024, 46(2): 165-172. |
[6] | 姜晓颖, 刘静, 张治国, 张文, 高孟秋, 杨新婷, 弭凤玲. 196例初治病原学阳性肺结核患者结核感染控制知识知晓情况调查[J]. 中国防痨杂志, 2024, 46(2): 213-220. |
[7] | 何翼君, 成君, 高磊. 循序渐进:系统性开展结核分枝杆菌潜伏感染流行病学调查[J]. 中国防痨杂志, 2024, 46(1): 1-7. |
[8] | 王佳妮, 席明霞. 结核病灾难性卫生支出的研究进展[J]. 中国防痨杂志, 2024, 46(1): 112-118. |
[9] | 张丽帆, 马亚楠, 邹小青, 张月秋, 张奉春, 曾小峰, 赵岩, 刘升云, 左晓霞, 吴华香, 武丽君, 李鸿斌, 张志毅, 陈盛, 朱平, 张缪佳, 齐文成, 刘毅, 刘花香, 侍效春, 刘晓清, 中国风湿免疫病人群活动性结核病的流行病学调查和治疗效果及预后研究课题组. 风湿免疫病患者结核分枝杆菌潜伏感染率及相关影响因素的多中心横断面研究[J]. 中国防痨杂志, 2024, 46(1): 29-39. |
[10] | 杜毓, 张海鹏, 王鹏. 分枝杆菌噬菌体的研究现状及应用进展[J]. 中国防痨杂志, 2023, 45(9): 897-903. |
[11] | 毕秀丽, 耿红, 金瑾. 髓系细胞和CD4+ T细胞在结核分枝杆菌感染和免疫病理中的作用[J]. 中国防痨杂志, 2023, 45(9): 904-912. |
[12] | 李依奇, 柳永明, 陈耀龙, 杨引君, 刘贝, 温发延, 李岩. 布鲁氏菌性脊柱炎动物模型研究进展[J]. 中国防痨杂志, 2023, 45(9): 913-920. |
[13] | 郭同磊, 辛赫男, 高磊. 《世界卫生组织结核病整合指南模块1:结核病预防性治疗》解读[J]. 中国防痨杂志, 2023, 45(8): 723-727. |
[14] | 汪敏, 袁园, 谭守勇, 杨子龙, 冯治宇, 张宏, 吴迪, 陈泽莹, 黄显林, 邝浩斌. 2型糖尿病合并初治菌阳肺结核患者肺部广泛病灶和空洞发生的危险因素分析[J]. 中国防痨杂志, 2023, 45(8): 761-767. |
[15] | 王涵飞, 赵雁林, 徐彩红. 亚临床结核病研究进展[J]. 中国防痨杂志, 2023, 45(8): 808-813. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||