[1] |
Getahun H, Matteelli A, Chaisson RE, et al. Latent Mycobacterium tuberculosis infection. N Engl J Med, 2015, 372(22): 2127-2135. doi:10.1056/NEJMra1405427.
|
[2] |
中国防痨协会. 高危人群结核分枝杆菌潜伏感染检测及预防性治疗专家共识. 中国防痨杂志, 2021, 43(9): 874-878. doi:10.3969/j.issn.1000-6621.2021.09.004.
|
[3] |
World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018.
|
[4] |
Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1): e20. doi:10.1016/S2666-5247(22)00359-7.
|
[5] |
Zellweger JP, Sotgiu G, Corradi M, et al. The diagnosis of latent tuberculosis infection (LTBI): currently available tests, future developments, and perspectives to eliminate tuberculosis (TB). Med Lav, 2020, 111(3):170-183. doi:10.23749/mdl.v111i3.9983.
pmid: 32624559
|
[6] |
Qin H, Wang Y, Huang L, et al. Efficacy and Risk Factors of Interferon-Gamma Release Assays among HIV-Positive Individuals. Int J Environ Res Public Health, 2023, 20(5):4556. doi:10.3390/ijerph20054556.
|
[7] |
Shen BJ, Lin HH. Time-dependent association between cancer and risk of tuberculosis: A population-based cohort study. Int J Infect Dis, 2021, 108: 340-346. doi:10.1016/j.ijid.2021.05.037.
|
[8] |
Cadena J, Rathinavelu S, Lopez-Alvarenga JC, et al. The re-emerging association between tuberculosis and diabetes: Lessons from past centuries. Tuberculosis (Edinb), 2019, 116 S: S89-S97. doi:10.1016/j.tube.2019.04.015.
|
[9] |
Singhania A, Verma R, Graham CM, et al. A modular trans-criptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun, 2018, 9(1):2308. doi:10.1038/s41467-018-04579-w.
pmid: 29921861
|
[10] |
Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med, 2021, 218(10): e20210915. doi:10.1084/jem.20210915.
|
[11] |
Chen C, Wu Y, Li J, et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16(11):1733-1742. doi:10.1016/j.molp.2023.09.010.
|
[12] |
Tang D, Chen M, Huang X, et al. SRplot: A free online platform for data visualization and graphing. PLoS One, 2023, 18(11): e294236. doi:10.1371/journal.pone.0294236.
|
[13] |
Carlson MR, Zhang B, Fang Z, et al. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics, 2006, 7: 40. doi:10.1186/1471-2164-7-40.
pmid: 16515682
|
[14] |
Verma A, Ghoshal A, Dwivedi VP, et al. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol, 2022, 12:1079569. doi:10.3389/fcimb.2022.1079569.
|
[15] |
Khabibullina NF, Kutuzova DM, Burmistrova IA, et al. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis, 2022, 7(3):48. doi:10.3390/tropicalmed7030048.
|
[16] |
Cohen GM. Caspases: the executioners of apoptosis. Biochem J, 1997, 326 (Pt 1): 1-16. doi:10.1042/bj3260001.
|
[17] |
Blomgran R, Desvignes L, Briken V, et al. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD 4 T cells. Cell Host Microbe, 2012, 11(1):81-90. doi:10.1016/j.chom.2011.11.012.
pmid: 22264515
|
[18] |
Nisa A, Kipper FC, Panigrahy D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol, 2022, 323(5):C1444-C1474. doi:10.1152/ajpcell.00246.2022.
|
[19] |
Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol, 2000, 164(4):2016-2020. doi:10.4049/jimmunol.164.4.2016.
pmid: 10657653
|
[20] |
Zhang W, Ellingson L, Frascoli F, et al. An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis. J Math Biol, 2021, 83(3):31. doi:10.1007/s00285-021-01655-6.
pmid: 34436682
|
[21] |
Kim CH. Chemokine-chemokine receptor network in immune cell trafficking. Curr Drug Targets Immune Endocr Metabol Disord, 2004, 4(4):343-361. doi:10.2174/1568008043339712.
|
[22] |
Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev, 2013, 24(2):105-113. doi:10.1016/j.cytogfr.2012.10.002.
|
[23] |
Barclay AM, Ninaber DK, van Veen S, et al. Airway epithelial cells mount an early response to mycobacterial infection. Front Cell Infect Microbiol, 2023, 13:1253037. doi:10.3389/fcimb.2023.1253037.
|
[24] |
Jang S, Uzelac A, Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection. J Leukoc Biol, 2008, 84(5):1264-1270. doi:10.1189/jlb.1107742.
|
[25] |
Guler R, Ozturk M, Sabeel S, et al. Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Front Immunol, 2021, 12: 733853. doi:10.3389/fimmu.2021.733853.
|
[26] |
Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev, 2003, 14(6):467-477. doi:10.1016/s1359-6101(03)00054-6.
|
[27] |
Scott HM, Flynn JL. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun, 2002, 70(11):5946-5954. doi:10.1128/IAI.70.11.5946-5954.2002.
|
[28] |
Mack U, Migliori GB, Sester M, et al. LTBI: latent tuberculosis infection or lasting immune responses to M.tuberculosis? A TBNET consensus statement. Eur Respir J, 2009, 33(5):956-973. doi:10.1183/09031936.00120908.
pmid: 19407047
|
[29] |
Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol, 2015, 16(1):57-63. doi:10.1038/ni.3048.
pmid: 25521685
|
[30] |
Simon HU, Yousefi S, Germic N, et al. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol, 2020, 181(1):11-23. doi:10.1159/000504847.
|
[31] |
Bohrer AC, Castro E, Hu Z, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resis-tance in mice. J Exp Med, 2021, 218(10): e20210469. doi:10.1084/jem.20210469.
|
[32] |
Kumar R, Singh P, Kolloli A, et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci, 2019, 6: 105. doi:10.3389/fmolb.2019.00105.
|
[33] |
Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol, 2014, 5: 514. doi:10.3389/fimmu.2014.00514.
pmid: 25368618
|
[34] |
Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A, 2004, 101(13):4560-4565. doi:10.1073/pnas.0400983101.
|
[35] |
Mily A, Kalsum S, Loreti MG, et al. Polarization of M1 and M2 Human Monocyte-Derived Cells and Analysis with Flow Cytometry upon Mycobacterium tuberculosis Infection. J Vis Exp, 2020(163). doi:10.3791/61807.
|