[1] |
Donovan J, Thwaites GE, Huynh J. Tuberculous meningitis: where to from here? Curr Opin Infect Dis, 2020, 33(3):259-266. doi: 10.1097/QCO.0000000000000648.
doi: 10.1097/QCO.0000000000000648
pmid: 32324614
|
[2] |
Wang YY, Xie BD. Progress on Diagnosis of Tuberculous Meningitis. Methods Mol Biol, 2018, 1754:375-386. doi: 10.1007/978-1-4939-7717-8_20.
doi: 10.1007/978-1-4939-7717-8_20
|
[3] |
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014, 15(8):509-524. doi: 10.1038/nrm3838.
doi: 10.1038/nrm3838
URL
|
[4] |
Khan AQ, Ahmed EI, Elareer NR, et al. Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells, 2019, 8(8):840. doi: 10.3390/cells8080840.
doi: 10.3390/cells8080840
URL
|
[5] |
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol, 2011, 48(1):61-69. doi: 10.1007/s00592-010-0226-0.
doi: 10.1007/s00592-010-0226-0
pmid: 20857148
|
[6] |
Ji F, Yang B, Peng X, et al. Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat, 2011, 18(7):e242-251. doi: 10.1111/j.1365-2893.2011.01443.x.
doi: 10.1111/j.1365-2893.2011.01443.x
|
[7] |
Sabir N, Hussain T, Shah SZA, et al. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Front Microbiol, 2018, 9:602. doi: 10.3389/fmicb.2018.00602.
doi: 10.3389/fmicb.2018.00602
URL
|
[8] |
中华医学会结核病学分会结核性脑膜炎专业委员会. 2019中国中枢神经系统结核病诊疗指南. 中华传染病杂志, 2020, 38(7):400-408. doi: 10.3760/cma.j.cn311365-20200606-00645.
doi: 10.3760/cma.j.cn311365-20200606-00645
|
[9] |
Poplin V, Boulware DR, Bahr NC. Methods for rapid diagnosis of meningitis etiology in adults. Biomark Med, 2020, 14(6):459-479. doi: 10.2217/bmm-2019-0333.
doi: 10.2217/bmm-2019-0333
URL
|
[10] |
Hristea A, Olaru ID, Baicus C, et al. Clinical prediction rule for differentiating tuberculous from viral meningitis. Int J Tuberc Lung Dis, 2012, 16(6):793-798. doi: 10.5588/ijtld.11.0687.
doi: 10.5588/ijtld.11.0687
pmid: 22507645
|
[11] |
Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers,are miRNA the answer? Tuberculosis (Edinb), 2019, 118:101860. doi: 10.1016/j.tube.2019.101860.
doi: 10.1016/j.tube.2019.101860
URL
|
[12] |
Balzano F, Deiana M, Dei Giudici S, et al. miRNA Stability in Frozen Plasma Samples. Molecules, 2015, 20(10):19030-19040. doi: 10.3390/molecules201019030.
doi: 10.3390/molecules201019030
URL
|
[13] |
Glinge C, Clauss S, Boddum K, et al. Stability of Circulating Blood-Based MicroRNAs-Pre-Analytic Methodological Consi-derations. PLoS One, 2017, 12(2):e0167969. doi: 10.1371/journal.pone.0167969.
doi: 10.1371/journal.pone.0167969
URL
|
[14] |
尹慧敏, 贾永林, 李燕飞, 等. 结核性脑膜炎患者脑脊液外泌体中let-7d表达的研究. 中国实用神经疾病杂志, 2017, 20(6):9-12. doi: 10.3969/j.issn.1673-5110.2017.06.003.
doi: 10.3969/j.issn.1673-5110.2017.06.003
|
[15] |
路雁惠, 郭斌, 张锐毅, 等. 结核性脑膜炎患者脑脊液外泌体中Let-7b的表达水平及临床意义. 中风与神经疾病杂志, 2018, 35(12):1107-1110. doi: 10.19845/j.cnki.zfysjjbzz.2018.12.013.
doi: 10.19845/j.cnki.zfysjjbzz.2018.12.013
|
[16] |
Pan D, Pan M, Xu YM. Mir-29a expressions in peripheral blood mononuclear cell and cerebrospinal fluid: Diagnostic value in patients with pediatric tuberculous meningitis. Brain Res Bull, 2017, 130:231-235. doi: 10.1016/j.brainresbull.2017.01.013.
doi: 10.1016/j.brainresbull.2017.01.013
URL
|
[17] |
Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019, 40:564-573. doi: 10.1016/j.ebiom.2019.01.023.
doi: 10.1016/j.ebiom.2019.01.023
URL
|
[18] |
Pan L, Liu F, Zhang J, et al. Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Front Cell Infect Microbiol, 2019, 9:323. doi: 10.3389/fcimb.2019.00323.
doi: 10.3389/fcimb.2019.00323
URL
|
[19] |
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem, 2010, 56(11):1733-1741. doi: 10.1373/clinchem.2010.147405.
doi: 10.1373/clinchem.2010.147405
URL
|
[20] |
Lam A, Prabhu R, Gross CM, et al. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2):L218-L229. doi: 10.1152/ajplung.00162.2017.
doi: 10.1152/ajplung.00162.2017
URL
|
[21] |
Shariq M, Quadir N, Sheikh JA, et al. Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy, 2021, 17(3):814-817. doi: 10.1080/15548627.2020.1850009.
doi: 10.1080/15548627.2020.1850009
pmid: 33190592
|
[22] |
Zonghai C, Tao L, Pengjiao M, et al. Mycobacterium tuberculosis ESAT6 modulates host innate immunity by downregulating miR-222-3p target PTEN. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(1):166292. doi: 10.1016/j.bbadis.2021.166292.
doi: 10.1016/j.bbadis.2021.166292
URL
|
[23] |
Hu W, Chan H, Lu L, et al. Autophagy in intracellular bacterial infection. Semin Cell Dev Biol, 2020, 101:41-50. doi: 10.1016/j.semcdb.2019.07.014.
doi: 10.1016/j.semcdb.2019.07.014
URL
|
[24] |
Ernst JD. Mechanisms of M.tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe, 2018, 24(1):34-42. doi: 10.1016/j.chom.2018.06.004.
doi: S1931-3128(18)30316-0
pmid: 30001523
|
[25] |
Wang F, Huang G, Shen L, et al. Genetics and Functional Mechanisms of STAT3 Polymorphisms in Human Tuberculosis. Front Cell Infect Microbiol, 2021, 11:669394. doi: 10.3389/fcimb.2021.669394.
doi: 10.3389/fcimb.2021.669394
URL
|
[26] |
Watkins SK, Hurwitz AA. FOXO3: A master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology, 2012, 1(2):252-254. doi: 10.4161/onci.1.2.18241.
doi: 10.4161/onci.1.2.18241
URL
|
[27] |
Lu Y, Zhu Y, Wang X, et al. FOXO3 rs12212067: T>G Association with Active Tuberculosis in Han Chinese Population. Inflammation, 2016, 39(1):10-15. doi: 10.1007/s10753-015-0217-y.
doi: 10.1007/s10753-015-0217-y
URL
|
[28] |
Ratajczak-Wrona W, Jablonska E, Garley M, et al. PI3K-Akt/PKB signaling pathway in neutrophils and mononuclear cells exposed to N-nitrosodimethylamine. J Immunotoxicol, 2014, 11(3):231-237. doi: 10.3109/1547691X.2013.826307.
doi: 10.3109/1547691X.2013.826307
pmid: 23971717
|
[29] |
Shim JW, Madsen JR. VEGF Signaling in Neurological Disorders. Int J Mol Sci, 2018, 19(1):275. doi: 10.3390/ijms19010275.
doi: 10.3390/ijms19010275
URL
|
[30] |
Misra UK, Kalita J, Singh AP, et al. Vascular endothelial growth factor in tuberculous meningitis. Int J Neurosci, 2013, 123(2):128-132. doi: 10.3109/00207454.2012.743127.
doi: 10.3109/00207454.2012.743127
pmid: 23098361
|
[31] |
Abd-El-Fattah AA, Sadik NAH, Shaker OG, et al. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys, 2013, 67(3):875-884. doi: 10.1007/s12013-013-9575-y.
doi: 10.1007/s12013-013-9575-y
pmid: 23559272
|
[32] |
Kathirvel M, Saranya S, Mahadevan S. Expression levels of candidate circulating microRNAs in pediatric tuberculosis. Pathog Glob Health, 2020, 114(5):262-270. doi: 10.1080/20477724.2020.1761140.
doi: 10.1080/20477724.2020.1761140
pmid: 32401176
|
[33] |
Wang C, Yang S, Liu CM, et al. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb), 2018, 108:26-34. doi: 10.1016/j.tube.2017.08.010.
doi: 10.1016/j.tube.2017.08.010
URL
|
[34] |
Wu Z, Lu H, Sheng J, et al. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett, 2012, 586(16):2459-2467. doi: 10.1016/j.febslet.2012.06.004.
doi: 10.1016/j.febslet.2012.06.004
URL
|
[35] |
Zhao Z, Hao J, Li X, et al. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett, 2019, 593(12):1326-1335. doi: 10.1002/1873-3468.13438.
doi: 10.1002/1873-3468.13438
URL
|