中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (3): 294-298.doi: 10.19982/j.issn.1000-6621.20210646
收稿日期:
2021-11-12
出版日期:
2022-03-10
发布日期:
2022-03-08
通信作者:
李晓非
E-mail:1971069866@qq.com
基金资助:
Received:
2021-11-12
Online:
2022-03-10
Published:
2022-03-08
Contact:
LI Xiao-fei
E-mail:1971069866@qq.com
Supported by:
摘要:
随着医学科学技术的不断发展,特别是精准诊疗时代的来临,分子生物学检测技术在结核病早期诊断辅助方面受到广泛重视和应用。分子生物学检测技术具有准确、高效、高通量等优点,为结核病的诊疗及疫情的防控带来了新曙光。本文中,笔者综合国内外学者研究成果,阐述了基于核酸扩增试验技术、核酸分子杂交技术、基因测序的结核病检测及药物敏感性分析技术和其他新型结核病检测技术的应用现状及其最新研究进展,以期为结核病的辅助诊断提供参考。
中图分类号:
樊茹, 李晓非. 结核病分子生物学检测技术研究进展[J]. 中国防痨杂志, 2022, 44(3): 294-298. doi: 10.19982/j.issn.1000-6621.20210646
FAN Ru, LI Xiao-fei. Research progress of molecular biology detection technology for tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(3): 294-298. doi: 10.19982/j.issn.1000-6621.20210646
[1] |
Daley CL. The Global Fight Against Tuberculosis. Thorac Surg Clin, 2019, 29(1):19-25. doi: 10.1016/j.thorsurg.2018.09.010.
doi: 10.1016/j.thorsurg.2018.09.010 URL |
[2] | 严芝光, 周丽. 结核杆菌实验室检测技术与临床应用进展. 临床检验杂志(电子版), 2017, 6(4):826-828. |
[3] |
姜世闻. 《结核病分类》和《肺结核诊断》新标准对结核病控制工作的影响. 中国防痨杂志, 2018, 40(3):229-230. doi: 10.3969/j.issn.1000-6621.2018.03.001.
doi: 10.3969/j.issn.1000-6621.2018.03.001 |
[4] |
Acharya B, Acharya A, Gautam S, et al. Advances in diagnosis of Tuberculosis: an update into molecular diagnosis of Mycobacterium tuberculosis. Mol Biol Rep, 2020, 47(5):4065-4075. doi: 10.1007/s11033-020-05413-7.
doi: 10.1007/s11033-020-05413-7 URL |
[5] |
Zifodya JS, Kreniske JS, Schiller I, et al. Xpert Ultra versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with presumptive pulmonary tuberculosis. Cochrane Database Syst Rev, 2021, 2:CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[6] |
Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6): CD009593. doi: 10.1002/14651858.CD009593.
doi: 10.1002/14651858.CD009593 |
[7] |
Kay AW, González Fernández L, Takwoingi Y, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst Rev, 2020, 8(8): CD013359. doi: 10.1002/14651858.CD013359.
doi: 10.1002/14651858.CD013359 |
[8] |
Shapiro AE, Ross JM, Yao M, et al. Xpert MTB/RIF and Xpert Ultra assays for screening for pulmonary tuberculosis and rifampicin resistance in adults, irrespective of signs or symptoms. Cochrane Database Syst Rev, 2021, 3(3):CD013694. doi: 10.1002/14651858.CD013694.
doi: 10.1002/14651858.CD013694 |
[9] |
韩利军, 赵雪瑶. 结核性脑膜炎脑脊液分子检测技术概述. 结核与肺部疾病杂志, 2021, 2(1):8-12. doi: 10.3969/j.issn.2096-8493.2021.01.003.
doi: 10.3969/j.issn.2096-8493.2021.01.003 |
[10] | World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children. Geneva: World Health Organization, 2014. |
[11] |
Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2021, 19(1):65-77. doi: 10.1080/14787210.2020.1810565.
doi: 10.1080/14787210.2020.1810565 URL |
[12] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[13] |
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 2018, 18(1):76-84. doi: 10.1016/S1473-3099(17)30691-6.
doi: S1473-3099(17)30691-6 pmid: 29198911 |
[14] |
Jiang J, Yang J, Shi Y, et al. Head-to-head comparison of the diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra for tuberculosis: a meta-analysis. Infect Dis (Lond), 2020, 52(11):763-775. doi: 10.1080/23744235.2020.1788222.
doi: 10.1080/23744235.2020.1788222 |
[15] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2020. |
[16] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020, 58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 |
[17] |
Penn-Nicholson A, Gomathi SN, Ugarte-Gil C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur Respir J, 2021, 58(5):2100526. doi: 10.1183/13993003.00526-2021.
doi: 10.1183/13993003.00526-2021 URL |
[18] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization, 2020. |
[19] |
Gomathi NS, Singh M, Singh UB, et al. Multicentric validation of indigenous molecular test Truenat MTB for detection of Mycobacterium tuberculosis in sputum samples from presumptive pulmonary tuberculosis patients in comparison with reference standards. Indian J Med Res, 2020, 152(4):378-385. doi: 10.4103/ijmr.IJMR_2539_19.
doi: 10.4103/ijmr.IJMR_2539_19 pmid: 33380702 |
[20] | World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva: World Health Organization, 2016. |
[21] |
林晶晶, 夏露, 刘旭晖, 等. 环介导等温扩增技术用于结核病诊断的价值评估. 复旦学报(医学版), 2021, 48(1):104-110. doi: 10.3969/j.issn.1672-8467.2021.01.016.
doi: 10.3969/j.issn.1672-8467.2021.01.016 |
[22] |
Wu D, Kang J, Li B, et al. Evaluation of the RT-LAMP and LAMP methods for detection of Mycobacterium tuberculosis. J Clin Lab Anal, 2018, 32(4):e22326. doi: 10.1002/jcla.22326.
doi: 10.1002/jcla.22326 URL |
[23] |
Yadav R, Daroch P, Gupta P, et al. Diagnostic accuracy of TB-LAMP assay in patients with pulmonary tuberculosis-a case-control study in northern India. Pulmonology, 2020, 5:S2531-0437(20)30224-5. doi: 10.1016/j.pulmoe.2020.10.007.
doi: 10.1016/j.pulmoe.2020.10.007 |
[24] |
Bojang AL, Mendy FS, Tientcheu LD, et al. Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in The Gambia. J Infect, 2016, 72(3):332-337. doi: 10.1016/j.jinf.2015.11.011.
doi: 10.1016/j.jinf.2015.11.011 pmid: 26724771 |
[25] |
Joon D, Nimesh M, Varma-Basil M, et al. Evaluation of improved IS6110 LAMP assay for diagnosis of pulmonary and extra pulmonary tuberculosis. J Microbiol Methods, 2017, 139:87-91. doi: 10.1016/j.mimet.2017.05.007.
doi: 10.1016/j.mimet.2017.05.007 URL |
[26] |
徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020, 24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023.
doi: 10.3969/j.issn.1009-6469.2020.12.023 |
[27] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis. Geneva: World Health Organization, 2008. |
[28] |
Nathavitharana RR, Cudahy PG, Schumacher SG, et al. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2017, 49(1):1601075. doi: 10.1183/13993003.01075-2016.
doi: 10.1183/13993003.01075-2016 URL |
[29] | World Health Organization. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs. Geneva: World Health Organization, 2016. |
[30] |
Singh BK, Sharma SK, Sharma R, et al. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis. PLoS One, 2017, 12(8):e182988. doi: 10.1371/journal.pone.0182988.
doi: 10.1371/journal.pone.0182988 |
[31] |
许璐, 孙一鑫, 詹思延. 线性探针技术诊断耐药肺结核准确性的Meta分析. 中华流行病学杂志, 2018, 39(11):1491-1495. doi: 10.3760/cma.j.issn.0254-6450.2018.11.014.
doi: 10.3760/cma.j.issn.0254-6450.2018.11.014 |
[32] |
李俊明, 徐炜. 结核病的分子诊断——进展与挑战. 实验与检验医学, 2020, 38(6):1039-1046, 1066. doi: 10.3969/j.issn.1674-1129.2020.06.001.
doi: 10.3969/j.issn.1674-1129.2020.06.001 |
[33] |
Votintseva AA, Bradley P, Pankhurst L, et al. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol, 2017, 55(5):1285-1298. doi: 10.1128/JCM.02483-16.
doi: 10.1128/JCM.02483-16 pmid: 28275074 |
[34] |
Amlerova J, Bitar I, Hrabak J. Genotyping of Mycobacterium tuberculosis using whole genome sequencing. Folia Microbiol (Praha), 2018, 63(5):537-545. doi: 10.1007/s12223-018-0599-y.
doi: 10.1007/s12223-018-0599-y URL |
[35] |
Gautam SS, Mac AM, Cooley LA, et al. Molecular epidemiology of tuberculosis in Tasmania and genomic characterisation of its first known multi-drug resistant case. PLoS One, 2018, 13(2):e192351. doi: 10.1371/journal.pone.0192351.
doi: 10.1371/journal.pone.0192351 |
[36] |
林爱清, 张璐, 成宝涛, 等. 二代测序技术应用于脑脊液检测在结核性脑膜炎中的早期诊断价值. 中华实验和临床感染病杂志(电子版), 2020, 14(4):291-295. doi: 10.3877/cma.j.issn.1674-1358.2020.04.005.
doi: 10.3877/cma.j.issn.1674-1358.2020.04.005 |
[37] |
Zhao M, Tang K, Liu F, et al. Metagenomic Next-Generation Sequencing Improves Diagnosis of Osteoarticular Infections From Abscess Specimens: A Multicenter Retrospective Study. Front Microbiol, 2020, 11:2034. doi: 10.3389/fmicb.2020.02034.
doi: 10.3389/fmicb.2020.02034 URL |
[38] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4):567-574. doi: 10.1016/j.jinf.2020.08.004.
doi: 10.1016/j.jinf.2020.08.004 URL |
[39] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019, 9:351. doi: 10.3389/fcimb.2019.00351.
doi: 10.3389/fcimb.2019.00351 URL |
[40] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob, 2019, 18(1):2. doi: 10.1186/s12941-018-0300-y.
doi: 10.1186/s12941-018-0300-y URL |
[41] |
辜吉秀, 李晴, 马玲, 等. 高通量二代测序技术在耐药结核病诊断中的应用. 中国防痨杂志, 2020, 42(11):1203-1208. doi: 10.3969/j.issn.1000-6621.2020.11.011.
doi: 10.3969/j.issn.1000-6621.2020.11.011 |
[42] |
Lee RS, Pai M. Real-Time Sequencing of Mycobacterium tuberculosis: Are We There Yet?. J Clin Microbiol, 2017, 55(5):1249-1254. doi: 10.1128/JCM.00358-17.
doi: 10.1128/JCM.00358-17 URL |
[43] |
Horita N, Yamamoto M, Sato T, et al. Sensitivity and specificity of Cobas TaqMan MTB real-time polymerase chain reaction for culture-proven Mycobacterium tuberculosis: meta-analysis of 26999 specimens from 17 Studies. Sci Rep, 2015, 5:18113. doi: 10.1038/srep18113.
doi: 10.1038/srep18113 URL |
[44] |
Park JE, Huh HJ, Koh WJ, et al. Performance evaluation of the Cobas TaqMan MTB assay on respiratory specimens according to clinical application. Int J Infect Dis, 2017, 64:42-46. doi: 10.1016/j.ijid.2017.08.014.
doi: 10.1016/j.ijid.2017.08.014 URL |
[45] |
Bloemberg GV, Voit A, Ritter C, et al. Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol, 2013, 51(7):2112-2117. doi: 10.1128/JCM.00142-13.
doi: 10.1128/JCM.00142-13 pmid: 23616457 |
[46] |
逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[47] |
Sağıroğlu P, Atalay MA. Evaluation of the performance of the BD MAX MDR-TB test in the diagnosis of Mycobacterium tuberculosis complex in extrapulmonary and pulmonary samples. Expert Rev Mol Diagn, 2021, 21(12):1361-1367. doi: 10.1080/14737159.2021.1997594.
doi: 10.1080/14737159.2021.1997594 URL |
[48] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020, 22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: S1525-1578(20)30396-2 pmid: 32688054 |
[49] |
Shah M, Paradis S, Betz J, et al. Multicenter Study of the Accuracy of the BD MAX Multidrug-resistant Tuberculosis Assay for Detection of Mycobacterium tuberculosis Complex and Mutations Associated With Resistance to Rifampin and Isoniazid. Clin Infect Dis, 2020, 71(5):1161-1167. doi: 10.1093/cid/ciz932.
doi: 10.1093/cid/ciz932 URL |
[50] |
Borrás R, Martínez V, Vinuesa V, et al. Field performance of the Abbott RealTime MTB assay for the diagnosis of extrapulmonary tuberculosis in a low-prevalence setting. Enferm Infecc Microbiol Clin (Engl Ed), 2020, 38(5):206-211. doi: 10.1016/j.eimc.2019.08.007.
doi: 10.1016/j.eimc.2019.08.007 |
[51] |
Hofmann-Thiel S, Molodtsov N, Duffner C, et al. Capacity of Abbott RealTime MTB RIF/INH to detect rifampicin- and isoniazid-resistant tuberculosis. Int J Tuberc Lung Dis, 2019, 23(4):458-464. doi: 10.5588/ijtld.18.0615.
doi: 10.5588/ijtld.18.0615 pmid: 31064625 |
[52] |
Kohli M, MacLean E, Pai M, et al. Diagnostic accuracy of centralised assays for TB detection and detection of resistance to rifampicin and isoniazid: a systematic review and meta-analysis. Eur Respir J, 2021, 57(2):2000747. doi: 10.1183/13993003.00747-2020.
doi: 10.1183/13993003.00747-2020 URL |
[53] |
Scott L, David A, Noble L, et al. Performance of the Abbott RealTime MTB and MTB RIF/INH Assays in a Setting of High Tuberculosis and HIV Coinfection in South Africa. J Clin Microbiol, 2017, 55(8):2491-2501. doi: 10.1128/JCM.00289-17.
doi: 10.1128/JCM.00289-17 URL |
[1] | 安军, 逄宇. 抗结核新药的临床应用:新希望与新挑战[J]. 中国防痨杂志, 2022, 44(3): 205-208. |
[2] | 岳英, 黄婷婷, 任斐, 马进宝, 漆沄. 先天性耐药结核病一例并文献复习[J]. 中国防痨杂志, 2022, 44(3): 252-257. |
[3] | 雷静, 邬霞, 谈小文, 李爱芳, 崔晓利, 康磊, 庞健健, 任斐, 吴守振, 杨翰. GeneXpert MTB/RIF Ultra检测手术组织对结核病的诊断价值[J]. 中国防痨杂志, 2022, 44(2): 141-146. |
[4] | 金龙, 田琦, 张宝庆, 邢海冬, 高明霞, 张秀英, 王利华, 张晓磊. 荧光PCR熔解曲线法检测耐多药肺结核患者对左氧氟沙星和莫西沙星耐药性的效能研究[J]. 中国防痨杂志, 2022, 44(2): 159-163. |
[5] | 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用[J]. 中国防痨杂志, 2022, 44(1): 91-94. |
[6] | 祁雪婷, 陆宇, 陈效友. 抗结核新药药效学特点及相互作用研究[J]. 中国防痨杂志, 2021, 43(9): 965-969. |
[7] | 曹倩倩, 祝秉东, 牛红霞. 结核病重组蛋白亚单位疫苗研究进展[J]. 中国防痨杂志, 2021, 43(9): 970-974. |
[8] | 王亚翠, 孙琳, 申阿东. Xpert MTB/RIF Ultra在儿童结核病诊断中的应用进展[J]. 中国防痨杂志, 2021, 43(8): 843-846. |
[9] | 姚蓉, 陆宇. 抗结核药物早期杀菌活性研究及进展[J]. 中国防痨杂志, 2021, 43(7): 724-728. |
[10] | 郑璐瑶, 陆宇, 陈效友. 非结核分枝杆菌肺病治疗药物研发的现状与挑战[J]. 中国防痨杂志, 2021, 43(7): 729-734. |
[11] | 王乐乐, 郭建琼, 杨松, 唐神结. 结核性脑膜炎诊断方法研究进展[J]. 中国防痨杂志, 2021, 43(7): 735-740. |
[12] | 方敏, 石艳, 段莉, 石小梅, 全舒婷, 王亚翠, 彭小姗, 郏继航, 綦辉, 焦伟伟, 朱渝, 孙琳. GeneXpert MTB/RIF Ultra检测胃液标本对儿童肺结核的诊断价值[J]. 中国防痨杂志, 2021, 43(6): 584-589. |
[13] | 洪飘如, 蒋慧芳, 陶叠宏, 苏传勇, 郭淑萍, 吴海英, 蒋玉霞, 叶萤燕. 大颗粒淋巴细胞白血病并发鸟分枝杆菌脑膜炎一例并文献复习[J]. 中国防痨杂志, 2021, 43(6): 631-635. |
[14] | 刘海婷, 陆宇. 抗结核药物组合药效筛选研究进展[J]. 中国防痨杂志, 2021, 43(4): 404-408. |
[15] | 刘鑫, 郭乐, 仵倩红. 抗结核药品导致严重骨髓抑制一例并文献复习[J]. 中国防痨杂志, 2021, 43(4): 413-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||