[1] |
World Health Organization. ZH mediacentre PR 2011: WHO warns against the use of inaccurate blood tests for active tuberculosis. Geneva: World Health Organization, 2011.
|
[2] |
Silva VM, Kanaujia G, Gennaro ML, et al. Factors associated with humoral response to ESAT-6, 38 kDa and 14 kDa in patients with a spectrum of tuberculosis. Int J Tuberc Lung Dis, 2003, 7(5):478-484.
pmid: 12757050
|
[3] |
Bera S, Shende N, Kumar S, et al. Detection of antigen and antibody in childhood tuberculous meningitis. Indian J Pediatr, 2006, 73(8):675-679. doi: 10.1007/BF02898442.
doi: 10.1007/BF02898442
URL
|
[4] |
樊学军, 罗垲炜, 田绿波, 等. 重组38kDa抗原对结核病诊断应用价值的评价. 中国医药指南, 2010, 8(34):177-178.
|
[5] |
唐宇龙, 杨华, 刘湘新, 等. 三种结核分枝杆菌分泌蛋白的抗体制备及其在抗原检测中的应用. 中华传染病杂志, 2007, 25(10):597-600. doi: 10.3760/j.issn:1000-6680.2007.10.005.
doi: 10.3760/j.issn:1000-6680.2007.10.005
|
[6] |
Mudaliar AV, Kashyap RS, Purohit HJ, et al. Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol, 2006, 6:34. doi: 10.1186/1471-2377-6-34.
doi: 10.1186/1471-2377-6-34
pmid: 16978411
|
[7] |
梁正敏, 王元智, 刘一朵, 等. 抗原85复合物的致病机制及其在结核病疫苗研制中的应用进展. 中国防痨杂志, 2020, 42(11):1243-1249. doi: 10.3969/j.issn.1000-6621.2020.11.018.
doi: 10.3969/j.issn.1000-6621.2020.11.018
|
[8] |
Khan A, Singh R, Sharma S, et al. Diagnosis of osteoarticular tuberculosis by immuno-PCR assay based on mycobacterial antigen 85 complex detection. Lett Appl Microbiol, 2021, 74(1):17-26. doi: 10.1111/lam.13567.
doi: 10.1111/lam.13567
URL
|
[9] |
李荣娟. 血清脂阿拉伯甘露糖-IgG诊断肺结核的临床价值. 山东医学高等专科学校学报, 2021, 43(4):293-294. doi: 10.3969/j.issn.1674-0947.2021.04.023.
doi: 10.3969/j.issn.1674-0947.2021.04.023
|
[10] |
Flores LL, Steingart KR, Dendukuri N, et al. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol, 2011, 18(10):1616-1627. doi: 10.1128/CVI.05205-11.
doi: 10.1128/CVI.05205-11
pmid: 21832100
|
[11] |
Iskandar A, Nursiloningrum E, Arthamin MZ, et al. The diagnostic value of urine lipoarabinomannan (LAM) antigen in childhood tuberculosis. J Clin Diagn Res, 2017, 11(3): EC32-EC35. doi: 10.7860/JCDR/2017/20909.9542.
doi: 10.7860/JCDR/2017/20909.9542
|
[12] |
Wu X, Yang Y, Zhang J, et al. Comparison of antibody responses to seventeen antigens from Mycobacterium tuberculosis. Clin Chim Acta, 2010, 411(19/20):1520-1528. doi: 10.1016/j.cca.2010.06.014.
doi: 10.1016/j.cca.2010.06.014
URL
|
[13] |
杨群, 江晓静. 结核蛋白芯片对肺结核及肺外结核的诊断价值. 西安交通大学学报(医学版), 2012, 33(1): 129-130, 封3. doi: 10.3969/j.issn.1671-8259.2012.01.032.
doi: 10.3969/j.issn.1671-8259.2012.01.032
|
[14] |
Zhou F, Xu X, Wu S, et al. Protein array identification of protein markers for serodiagnosis of Mycobacterium tuberculosis infection. Sci Rep, 2015, 5:15349. doi: 10.1038/srep15349.
doi: 10.1038/srep15349
URL
|
[15] |
贺仁忠, 王霄, 陈玲, 等. 结核潜伏感染诊断新型候选标志物的筛选及临床验证. 中国人兽共患病学报, 2018, 34(9):794-800. doi: 10.3969/j.issn.1002-2694.2018.00.194.
doi: 10.3969/j.issn.1002-2694.2018.00.194
|
[16] |
Kasempimolporn S, Thaveekarn W, Promrungreang K, et al. Improved serodiagnostic sensitivity of strip test for latent tuberculosis. J Clin Diagn Res, 2017, 11(6): DC01-DC03. doi: 10.7860/JCDR/2017/25860.9994.
doi: 10.7860/JCDR/2017/25860.9994
|
[17] |
Kruh-Garcia NA, Wolfe LM, Dobos KM. Deciphering the role of exosomes in tuberculosis. Tuberculosis (Edinb), 2015, 95(1):26-30. doi: 10.1016/j.tube.2014.10.010.
doi: 10.1016/j.tube.2014.10.010
URL
|
[18] |
Ma G, Pan J, Han J, et al. Identification of M.tuberculosis antigens in the sera of tuberculosis patients using biomimetic affinity chromatography in conjunction with ESI-CID-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1061-1062: 452-458. doi: 10.1016/j.jchromb.2017.07.052.
doi: 10.1016/j.jchromb.2017.07.052
URL
|
[19] |
Cao T, Lyu L, Jia H, et al. A two-way proteome microarray strategy to identify novel Mycobacterium tuberculosis-human interactions. Front Cell Infect Microbiol, 2019, 9:65. doi: 10.3389/fcimb.2019.00065.
doi: 10.3389/fcimb.2019.00065
URL
|
[20] |
张昆南, 许自强, 王朝东, 等. 脑脊液中检测结核分枝杆菌特异性抗原对结核性脑膜炎的诊断意义. 中华神经科杂志, 2011, 44(2):86-90. doi: 10.3760/cma.j.issn.1006-7876.2011.02.004.
doi: 10.3760/cma.j.issn.1006-7876.2011.02.004
|
[21] |
Broger T, Tsionksy M, Mathew A, et al. Sensitive electrochemiluminescence (ECL) immunoassays for detecting lipoarabinomannan (LAM) and ESAT-6 in urine and serum from tuberculosis patients. PLoS One, 2019, 14(4):e0215443. doi: 10.1371/journal.pone.0215443.
doi: 10.1371/journal.pone.0215443
URL
|
[22] |
王雪梅, 周松林, 熊国亮. 时间分辨荧光分析法测定CFP10对结核性胸腔积液的临床诊断价值. 江西医药, 2017, 52(8):746-749. doi: 10.3969/j.issn.1006-2238.2017.08.011.
doi: 10.3969/j.issn.1006-2238.2017.08.011
|
[23] |
崔光辉. 斑点金免疫渗滤试验检价测血清结核分枝杆菌IgG在肺结核诊断中的价值. 医学信息, 2015(17):193-194. doi: 10.3969/j.issn.1006-1959.2015.17.262.
doi: 10.3969/j.issn.1006-1959.2015.17.262
|
[24] |
Fan J, Zhang H, Nguyen DT, et al. Rapid diagnosis of new and relapse tuberculosis by quantification of a circulating antigen in HIV-infected adults in the Greater Houston metropolitan area. BMC Med, 2017, 15(1):188. doi: 10.1186/s12916-017-0952-z.
doi: 10.1186/s12916-017-0952-z
URL
|
[25] |
Szewczyk R, Kowalski K, Janiszewska-Drobinska B, et al. Rapid method for Mycobacterium tuberculosis identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids. Diagn Microbiol Infect Dis, 2013, 76(3):298-305. doi: 10.1016/j.diagmicrobio.2013.03.025.
doi: 10.1016/j.diagmicrobio.2013.03.025
URL
|
[26] |
Nicoara SC, Minnikin DE, Lee OC, et al. Development and optimization of a gas chromatography/mass spectrometry method for the analysis of thermochemolytic degradation products of phthiocerol dimycocerosate waxes found in Mycobacterium tuberculosis. Rapid Commun Mass Spectrom, 2013, 27(21):2374-2382. doi: 10.1002/rcm.6694.
doi: 10.1002/rcm.6694
URL
|
[27] |
Thakur H, Kaur N, Sareen D, et al. Electrochemical determination of M.tuberculosis antigen based on Poly (3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Talanta, 2017, 171:115-123. doi: 10.1016/j.talanta.2017.04.063.
doi: 10.1016/j.talanta.2017.04.063
URL
|
[28] |
Bai L, Chen Y, Bai Y, et al. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials, 2017, 133:11-19. doi: 10.1016/j.biomaterials.2017.04.010.
doi: 10.1016/j.biomaterials.2017.04.010
URL
|
[29] |
Chen Y, Liu X, Guo S, et al. A sandwich-type electrochemical aptasensor for Mycobacterium tuberculosis MPT64 antigen detection using C60NPs decorated N-CNTs/GO nanocomposite coupled with conductive PEI-functionalized metal-organic framework. Biomaterials, 2019, 16:119253. doi: 10.1016/j.biomaterials.2019.119253.
doi: 10.1016/j.biomaterials.2019.119253
|