中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (9): 991-997.doi: 10.19982/j.issn.1000-6621.20240219
收稿日期:
2024-05-30
出版日期:
2024-09-10
发布日期:
2024-08-30
通信作者:
张文宏,Email:基金资助:
Li Yang1,2, Sun Feng1,2, Zhang Wenhong1,2()
Received:
2024-05-30
Online:
2024-09-10
Published:
2024-08-30
Contact:
Zhang Wenhong, Email: Supported by:
摘要:
目前,结核病疫情下降速度缓慢,距离世界卫生组织“终止结核病策略”所设定的里程碑目标仍有较大差距,研发并应用有效的短程治疗方案变得至关重要。本文旨在回顾过去几十年中结核病短程治疗的发展历程,评估当前治疗方法的有效性,以期为未来结核病短程治疗策略的优化提供依据和参考。通过系统性回顾文献和最新的临床试验数据,笔者分析了多种短程治疗方案的疗效、安全性,以及应用场景;并分析、归纳目前短程治疗的主要策略。尽管存在挑战,但通过新型药物的开发、药物剂量优化和更精准的患者评估,结核病的短程治疗有望在未来几年内取得显著进展。
中图分类号:
李杨, 孙峰, 张文宏. 结核病短程治疗研究:回顾与展望[J]. 中国防痨杂志, 2024, 46(9): 991-997. doi: 10.19982/j.issn.1000-6621.20240219
Li Yang, Sun Feng, Zhang Wenhong. Short-course treatment for tuberculosis: past achievements and future directions[J]. Chinese Journal of Antituberculosis, 2024, 46(9): 991-997. doi: 10.19982/j.issn.1000-6621.20240219
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1):15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | Millington KA, White RG, Lipman M, et al. The 2023 UN high-level meeting on tuberculosis: renewing hope, momentum, and commitment to end tuberculosis. Lancet Respir Med, 2024, 12(1): 10-13. doi:10.1016/S2213-2600(23)00409-5. |
[3] | 李杨, 吴利俊, 王钰琛, 等. 2016—2021年全球结核研究现状及热点:基于VOSviewer的可视化分析. 复旦学报(医学版), 2022, 49(2): 159-167. 10.3969/j.issn.1672-8467.2022.02.001. |
[4] | Lee A, Xie YL, Barry CE, et al. Current and future treatments for tuberculosis. BMJ, 2020, 368: m216. doi:10.1136/bmj.m216. |
[5] | Bignall J, Rist N. An international investigation of the efficacy of chemotherapy in previously untreated patients with pulmonary tuberculosis. A trial directed by the Committee on Treatment and the Committee on Bacteriology and Immunology of the International Union against Tuberculosis. Bull Int Union Tuberc, 1964, 34: 79-191. |
[6] | McCune RM Jr, McDermott W, Tompsett R.The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. Ⅱ. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med, 1956, 104(5): 763-802. doi:10.1084/jem.104.5.763. |
[7] |
Grumbach F. Activity of rifampicin on experimental tuberculosis in mice. The development of resistance to rifampicin. Therapeutic effects of combinations of different drugs with rifampicin. Antibiot Chemother, 1970, 16: 392-405.
pmid: 5002305 |
[8] |
Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet, 1972, 1(7760): 1079-1085.
pmid: 4112569 |
[9] | Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. Lancet, 1974, 2(7875): 237-240. |
[10] | Short-course chemotherapy in pulmonary tuberculosis. A controlled trial by the British Thoracic and Tuberculosis Association. Lancet, 1975, 1(7899): 119-124. |
[11] | Controlled clinical trial of four short-course regimens of chemotherapy for two durations in the treatment of pulmonary tuberculosis: first report: Third East African/British Medical Research Councils study. Am Rev Respir Dis, 1978, 118(1): 39-48. doi:10.1164/arrd.1978.118.1.39. |
[12] | Aguilar Diaz JM, Abulfathi AA, Te Brake LH, et al. New and repurposed drugs for the treatment of active tuberculosis: an update for clinicians. Respiration, 2023, 102(2): 83-100. doi:10.1159/000528274. |
[13] | 常蕴青, 顾瑾, 付亮, 等. 耐多药结核病短程治疗研究进展. 中华传染病杂志, 2018, 36(11): 697-700. doi:10.3760/cma.j.issn.1000-6680.2018.11.015. |
[14] | Dorman SE, Nahid P, Kurbatova EV, et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med, 2021, 384(18): 1705-1718. doi:10.1056/NEJMoa2033400. |
[15] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-susceptible tuberculosis treatment. Geneva: World Health Organization, 2022. |
[16] | Feng Z, Miao Y, Peng Y, et al. Optimizing (O) rifapentine-based (RI) regimen and shortening (EN) the treatment of drug-susceptible tuberculosis (T)(ORIENT) using an adaptive seamless design: study protocol of a multicenter randomized controlled trial. BMC Infect Dis, 2023, 23(1): 300. doi:10.1186/s12879-023-08264-2. |
[17] | Paton NI, Cousins C, Suresh C, et al. Treatment strategy for rifampin-susceptible tuberculosis. N Engl J Med, 2023, 388(10): 873-887. doi:10.1056/NEJMoa2212537. |
[18] | Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med, 2019, 380(13): 1201-1213. doi:10.1056/NEJMoa1811867. |
[19] |
Goodall RL, Meredith SK, Nunn AJ, et al. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet, 2022, 400(10366): 1858-1868. doi:10.1016/S0140-6736(22)02078-5.
pmid: 36368336 |
[20] |
Hewison C, Khan U, Bastard M, et al. Safety of treatment regimens containing bedaquiline and delamanid in the endTB cohort. Clin Infect Dis, 2022, 75(6): 1006-1013. doi:10.1093/cid/ciac019.
pmid: 35028659 |
[21] | Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med, 2020, 382(10): 893-902. doi:10.1056/NEJMoa1901814. |
[22] | Nyang’wa BT, Berry C, Kazounis E, et al. A 24-week, alloral regimen for rifampin-resistant tuberculosis. N Engl J Med, 2022, 387(25): 2331-2343. doi:10.1056/NEJMoa-2117166. |
[23] | Nyang’wa BT, Berry C, Kazounis E, et al. Short oral regimens for pulmonary rifampicin-resistant tuberculosis (TB-PRACTECAL): an open-label, randomised, controlled, phase 2B-3, multi-arm, multicentre, non-inferiority trial. Lancet Respir Med, 2024, 12(2): 117-128. doi:10.1016/S2213-2600(23)00389-2. |
[24] | World Health Organization. Rapid communication: key changes to the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2022. |
[25] | Weng T, Sun F, Li Y, et al. Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial. BMC Infect Dis, 2021, 21(1): 183. doi:10.1186/s12879-021-05870-w. |
[26] |
Mok J, Lee M, Kim DK, et al. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet, 2022, 400(10362): 1522-1530. doi:10.1016/S0140-6736(22)01883-9.
pmid: 36522208 |
[27] | Esmail A, Oelofse S, Lombard C, et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT study). Am J Respir Crit Care Med, 2022, 205(10): 1214-1227. doi:10.1164/rccm.202107-1779OC. |
[28] | Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin Infect Dis, 2023, 76(3): e938-e946. doi:10.1093/cid/ciac528. |
[29] | Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med, 2011, 365(23): 2155-2166. doi:10.1056/NEJMoa1104875. |
[30] | Menzies D, Adjobimey M, Ruslami R, et al. Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med, 2018, 379(5): 440-453. doi:10.1056/NEJMoa1714283. |
[31] | Swindells S, Ramchandani R, Gupta A, et al. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med, 2019, 380(11): 1001-1011. doi:10.1056/NEJMoa1806808. |
[32] | Ruan QL, Huang XT, Yang QL, et al. Efficacy and safety of weekly rifapentine and isoniazid for tuberculosis prevention in Chinese silicosis patients: a randomized controlled trial. Clin Microbiol Infect, 2021, 27(4): 576-582. doi:10.1016/j.cmi.2020.06.008. |
[33] | Gao L, Zhang H, Xin H, et al. Short-course regimens of rifapentine plus isoniazid to treat latent tuberculosis infection in older Chinese patients: a randomised controlled study. Eur Respir J, 2018, 52(6):1801470. doi:10.1183/13993003.01470-2018. |
[34] | Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4): 496-506. doi:10.1016/S1473-3099(21)00470-9. |
[35] | Azimi T, Khoshnood S, Asadi A, et al. Linezolid resistance in multidrug-resistant Mycobacterium tuberculosis: A systematic review and meta-analysis. Front Pharmacol, 2022,13: 955050. doi:10.3389/fphar.2022.955050. |
[36] | Diacon AH. Two Steps Forward, One Step Back. N Engl J Med, 2022, 387(25): 2380-2381. doi:10.1056/NEJMe2214707. |
[37] | Ramey ME, Kaya F, Bauman AA, et al. Drug distribution and efficacy of the DprE 1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother, 2023, 67(11): e0059723. doi:10.1128/aac.00597-23. |
[38] | Holt E. Phase 2 trial of a novel tuberculosis drug launched. Lancet Microbe, 2024, 5(4): e316. doi:10.1016/S2666-5247(23)00401-9. |
[39] |
Boeree MJ, Lange C, Thwaites G, et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. Int J Tuberc Lung Dis, 2021, 25(11): 886-889. doi:10.5588/ijtld.21.0515.
pmid: 34686229 |
[40] | Fox GJ, Nguyen CB, Nguyen TA, et al. Levofloxacin versus placebo for the treatment of latent tuberculosis among contacts of patients with multidrug-resistant tuberculosis (the VQUIN MDR trial): a protocol for a randomised controlled trial. BMJ Open, 2020, 10(1):e033945. doi:10.1136/bmjopen-2019-033945. |
[41] | Peloquin CA. Pharmacological issues in the treatment of tuberculosis. Ann N Y Acad Sci, 2001, 953: 157-164. doi:10.1111/j.1749-6632.2001.tb11374.x. |
[42] | Velásquez GE, Brooks MB, Coit JM, et al. Efficacy and safety of high-dose rifampin in pulmonary tuberculosis. A randomized controlled trial. Am J Respir Crit Care Med, 2018, 198(5): 657-666. doi:10.1164/rccm.201712-2524OC. |
[43] | Onorato L, Gentile V, Russo A, et al. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect, 2021, 27(6): 830-837. doi:10.1016/j.cmi.2021.03.031. |
[44] | Jindani A, Atwine D, Grint D, et al. Four-Month High-Dose Rifampicin Regimens for Pulmonary Tuberculosis. NEJM Evid, 2023, 2(9): EVIDoa2300054. doi:10.1056/EVIDoa-2300054. |
[45] | 宋凌云, 张忆琳, 孙峰, 等. 持续提高耐药结核病治疗安全性的挑战与对策. 中华传染病杂志, 2023, 41(12): 797-801. doi:10.3760/cma.j.cn311365-20230729-00020. |
[46] | 胡艳梅, 罗丹霖, 李杨, 等. 利奈唑胺治疗耐多药肺结核患者的不良反应分析. 中华传染病杂志, 2022, 40(8): 476-482. doi:10.3760/cma.j.cn311365-20210710-00247. |
[47] | Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med, 2022, 387(9): 810-823. doi:10.1056/NEJMoa2119430. |
[48] | Fregonese F, Apriani L, Barss L, et al. High dose rifampin for 2 months vs standard dose rifampin for 4 months, to treat TB infection: Protocol of a 3-arm randomized trial (2R2). PLoS One, 2023, 18(2): e0278087. doi:10.1371/journal.pone.0278087. |
[49] | Turkova A, Wills GH, Wobudeya E, et al. Shorter treatment for nonsevere tuberculosis in African and Indian children. N Engl J Med, 2022, 386(10): 911-922. doi:10.1056/NEJMoa2104535. |
[50] | 初乃惠, 周文强. 耐药结核病的诊治进展. 中华传染病杂志, 2021, 39(7): 385-391. doi:10.3760/cma.j.cn311365-20210414-00133. |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||