[1] |
舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006.
|
[2] |
虞翔, 吴叶鉴, 冀磊. 宿主导向的抗菌和抗病毒治疗. 国外医药抗生素分册, 2018, 39(6): 507-521. doi:10.13461/j.cnki.wna.005152.
|
[3] |
Paik S, Kim JK, Chung C, et al. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence, 2019, 10(1): 448-459. doi:10.1080/21505594.2018.1536598.
pmid: 30322337
|
[4] |
Jeong EK, Lee HJ, Jung YJ. Host-Directed Therapies for Tuberculosis. Pathogens, 2022, 11(11): 1291. doi:10.3390/pathogens11111291.
|
[5] |
Kilinç G, Saris A, Ottenhoff THM, et al. Host-directed therapy to combat mycobacterial infections. Immunol Rev, 2021, 301(1): 62-83. doi:10.1111/imr.12951.
pmid: 33565103
|
[6] |
Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect, 2020, 80(6): e19-e26. doi:10.1016/j.jinf.2020.03.003.
|
[7] |
董雪迎, 梁凯, 叶克应, 等. 受体酪氨酸激酶对自噬的调控及其研究进展. 中国生物工程杂志, 2021, 41(5): 72-78. doi:10.13523/j.cb.2012041.
|
[8] |
Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer, 2018, 17(1): 36. doi:10.1186/s12943-018-0801-5.
pmid: 29455664
|
[9] |
张迎秋, 刘书言, 刘晗. 受体酪氨酸激酶ErbB2靶向治疗策略和内吞降解调控的研究进展. 中国科学: 生命科学, 2021, 51(12): 1668-1680. doi:10.1360/SSV-2021-0410.
|
[10] |
Cortese M, Kumar A, Matula P, et al. Reciprocal Effects of Fibroblast Growth Factor Receptor Signaling on Dengue Virus Replication and Virion Production. Cell Rep, 2019, 27(9): 2579-2592.e6. doi:10.1016/j.celrep.2019.04.105.
pmid: 31141684
|
[11] |
Tavares NC, Gava SG, Torres GP, et al. Schistosoma mansoni FES Tyrosine Kinase Involvement in the Mammalian Schistosomiasis Outcome and Miracidia Infection Capability in Biomphalaria glabrata. Front Microbiol, 2020, 11: 963. doi:10.3389/fmicb.2020.00963.
pmid: 32595609
|
[12] |
Rodríguez-Mora S, Spivak AM, Szaniawski MA, et al. Tyrosine Kinase Inhibition: a New Perspective in the Fight against HIV. Curr HIV/AIDS Rep, 2019, 16(5): 414-422. doi:10.1007/s11904-019-00462-5.
|
[13] |
Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol, 2013, 5(8): a009043. doi:10.1101/cshperspect.a009043.
|
[14] |
Neben CL, Lo M, Jura N, et al. Feedback regulation of RTK signaling in development. Dev Biol, 2019, 447(1): 71-89. doi:10.1016/j.ydbio.2017.10.017.
pmid: 29079424
|
[15] |
Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, et al. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol, 2020, 36: 101510. doi:10.1016/j.redox.2020.101510.
|
[16] |
Critchley WR, Pellet-Many C, Ringham-Terry B, et al. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells, 2018, 7(3): 22. doi:10.3390/cells7030022.
|
[17] |
Carter JL, Hege K, Yang J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther, 2020, 5(1): 288. doi:10.1038/s41392-020-00361-x.
|
[18] |
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer, 2021, 1875(1): 188495. doi:10.1016/j.bbcan.2020.188495.
|
[19] |
Margiotta A. All Good Things Must End: Termination of Receptor Tyrosine Kinase Signal. Int J Mol Sci, 2021, 22(12): 6342. doi:10.3390/ijms22126342.
|
[20] |
Saraon P, Pathmanathan S, Snider J, et al. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24): 4079-4093. doi:10.1038/s41388-021-01841-2.
pmid: 34079087
|
[21] |
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, et al. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol, 2021, 12: 772510. doi:10.3389/fphar.2021.772510.
|
[22] |
Azad T, Rezaei R, Surendran A, et al. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel), 2020, 12(8): 2042. doi:10.3390/cancers12082042.
|
[23] |
Wang X, Li W, Zhang N, et al. Opportunities and challenges of co-targeting epidermal growth factor receptor and autophagy signaling in non-small cell lung cancer. Oncol Lett, 2019, 18(1): 499-506. doi:10.3892/ol.2019.10372.
pmid: 31289521
|
[24] |
Liu S, Liao Y, Chen B, et al. Critical role of Syk-dependent STAT1 activation in innate antiviral immunity. Cell Rep, 2021, 34(3): 108627. doi:10.1016/j.celrep.2020.108627.
|
[25] |
Bermejo M, López-Huertas MR, García-Pérez J, et al. Dasatinib inhibits HIV-1 replication through the interference of SAMHD1 phosphorylation in CD4+ T cells. Biochem Pharmacol, 2016, 106: 30-45. doi:10.1016/j.bcp.2016.02.002.
|
[26] |
张其程, 徐克. 自噬在EGFR-TKI类肿瘤靶向药物对肺癌的治疗和耐药中作用的研究进展. 中国肺癌杂志, 2016, 19(9): 607-614. doi:10.3779/j.issn.1009-3419.2016.09.09.
|
[27] |
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7): 1117-1134. doi:10.1016/j.cell.2010.06.011.
pmid: 20602996
|
[28] |
Botti J, Djavaheri-Mergny M, Pilatte Y, et al. Autophagy signaling and the cogwheels of cancer. Autophagy, 2006, 2(2): 67-73. doi:10.4161/auto.2.2.2458.
pmid: 16874041
|
[29] |
Wei Y, Zou Z, Becker N, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 2013, 154(6): 1269-1284. doi:10.1016/j.cell.2013.08.015.
pmid: 24034250
|
[30] |
Mukherjee T, Bhatt B, Prakhar P, et al. Epigenetic reader BRD 4 supports mycobacterial pathogenesis by co-modulating host lipophagy and angiogenesis. Autophagy, 2022, 18(2): 391-408. doi:10.1080/15548627.2021.1936355.
|
[31] |
Sogi KM, Lien KA, Johnson JR, et al. The Tyrosine Kinase Inhibitor Gefitinib Restricts Mycobacterium tuberculosis Growth through Increased Lysosomal Biogenesis and Modulation of Cytokine Signaling. ACS Infect Dis, 2017, 3(8): 564-574. doi:10.1021/acsinfecdis.7b00046.
|
[32] |
Salisbury TB, Tomblin JK. Insulin/Insulin-like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms, and new blocking strategies. Front Endocrinol (Lausanne), 2015, 6: 12. doi:10.3389/fendo.2015.00012.
|
[33] |
De Martino MC, van Koetsveld PM, Feelders RA, et al. IGF and mTOR pathway expression and in vitro effects of linsitinib and mTOR inhibitors in adrenocortical cancer. Endocrine, 2019, 64(3): 673-684. doi:10.1007/s12020-019-01869-1.
|
[34] |
Rodrigues Alves APN, Fernandes JC, Fenerich BA, et al. IGF1R/IRS1 targeting has cytotoxic activity and inhibits PI3K/AKT/mTOR and MAPK signaling in acute lymphoblastic leukemia cells. Cancer Lett, 2019, 456: 59-68. doi:10.1016/j.canlet.2019.04.030.
pmid: 31042587
|
[35] |
Wang H, Bi J, Zhang Y, et al. Human Kinase IGF1R/IR Inhibitor Linsitinib Controls the In Vitro and Intracellular Growth of Mycobacterium tuberculosis. ACS Infect Dis, 2022, 8(10): 2019-2027. doi:10.1021/acsinfecdis.2c00278.
|
[36] |
Woodring PJ, Litwack ED, O’Leary DD, et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J Cell Biol, 2002, 156(5): 879-892. doi:10.1083/jcb.200110014.
pmid: 11864995
|
[37] |
Appel S, Rupf A, Weck MM, et al. Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-kappaB and Akt signaling pathways. Clin Cancer Res, 2005, 11(5): 1928-1940. doi:10.1158/1078-0432.CCR-04-1713.
pmid: 15756019
|
[38] |
Bruns H, Stegelmann F, Fabri M, et al. Abelson tyrosine kinase controls phagosomal acidification required for killing of Mycobacterium tuberculosis in human macrophages. J Immunol, 2012, 189(8): 4069-4078. doi:10.4049/jimmunol.1201538.
|
[39] |
Kuijl C, Savage ND, Marsman M, et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 2007, 450(7170): 725-730. doi:10.1038/nature06345.
|
[40] |
Hussain T, Zhao D, Shah SZA, et al. Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy. Cells, 2019, 8(5): 506. doi:10.3390/cells8050506.
|
[41] |
Purcaru OS, Artene SA, Barcan E, et al. The Interference between SARS-CoV-2 and Tyrosine Kinase Receptor Signaling in Cancer. Int J Mol Sci, 2021, 22(9): 4830. doi:10.3390/ijms22094830.
|
[42] |
Colado A, Genoula M, Cougoule C, et al. Effect of the BTK inhibitor ibrutinib on macrophage- and γδ T cell-mediated response against Mycobacterium tuberculosis. Blood Cancer J, 2018, 8(11): 100. doi:10.1038/s41408-018-0136-x.
pmid: 30397191
|
[43] |
Sun FD, Wang PC, Shang J, et al. Ibrutinib presents antitumor activity in skin cancer and induces autophagy. Eur Rev Med Pharmacol Sci, 2018, 22(2): 561-566. doi:10.26355/eurrev_201801_14210.
|
[44] |
Wang J, Liu X, Hong Y, et al. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, exhibits antitumoral activity and induces autophagy in glioblastoma. J Exp Clin Cancer Res, 2017, 36(1): 96. doi:10.1186/s13046-017-0549-6.
pmid: 28716053
|