中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (9): 973-977.doi: 10.19982/j.issn.1000-6621.20220122
收稿日期:
2022-04-12
出版日期:
2022-09-10
发布日期:
2022-09-05
通信作者:
陆宇
E-mail:luyu4876@hotmail.com
基金资助:
Received:
2022-04-12
Online:
2022-09-10
Published:
2022-09-05
Contact:
Lu Yu
E-mail:luyu4876@hotmail.com
Supported by:
摘要:
随着耐多药结核病(multidrug-resistant tuberculosis,MDR-TB)和广泛耐药结核病(extensively drug-resistant tuberculosis,XDR-TB)菌株的增多,结核分枝杆菌(Mycobacterium tuberculosis,MTB)的耐药性成为全球亟待解决的问题。贝达喹啉(bedaquiline,Bdq)作为近50年来首个明确用于MDR-TB治疗的新药,其耐药问题受到逐步关注。笔者对Bdq的耐药特征和耐药基因突变等研究进展进行综述,旨在更好指导临床用药,提高患者的治疗成功率,减少耐药的发生。
中图分类号:
姚蓉, 陆宇. 抗结核药物贝达喹啉的耐药情况及其耐药机制研究进展[J]. 中国防痨杂志, 2022, 44(9): 973-977. doi: 10.19982/j.issn.1000-6621.20220122
Yao Rong, Lu Yu. Research progress on the drug resistance and mechanism of the anti-tuberculosis drug bedaquiline[J]. Chinese Journal of Antituberculosis, 2022, 44(9): 973-977. doi: 10.19982/j.issn.1000-6621.20220122
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health 0rganization,2021. |
[2] |
Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun, 2014, 5:3369. doi: 10.1038/ncomms4369.
doi: 10.1038/ncomms4369 URL |
[3] |
中华医学会结核病学分会. 抗结核新药贝达喹啉临床应用专家共识(2020年更新版). 中华结核和呼吸杂志, 2021, 44(2):81-87. doi: 10.3760/cma.j.cn112147-20200714-00805.
doi: 10.3760/cma.j.cn112147-20200714-00805 |
[4] |
王晓英, 罗明, 张汇征, 等. 结核分枝杆菌贝达喹啉和氯法齐明耐药及其交叉耐药机制研究进展. 中国人兽共患病学报, 2022, 38(2):165-169. doi: 10.3969/j.issn.1002-2694.2021.00.031.
doi: 10.3969/j.issn.1002-2694.2021.00.031 |
[5] | World Health Organization. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva: World Health Organization, 2013. |
[6] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014, 371(8):723-732. doi: 10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865 URL |
[7] |
Pontali E, Sotgiu G, D’Ambrosio L, et al. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J, 2016, 47(2):394-402. doi: 10.1183/13993003.01891-2015.
doi: 10.1183/13993003.01891-2015 URL |
[8] |
Mirzayev F, Viney K, Linh NN, et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J, 2021, 57(6):2003300. doi: 10.1183/13993003.03300-2020.
doi: 10.1183/13993003.03300-2020 |
[9] |
Singh P, Kumari R, Lal R. Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian J Microbiol, 2017, 57(4):371-377. doi: 10.1007/s12088-017-0674-0.
doi: 10.1007/s12088-017-0674-0 URL |
[10] |
Wu SH, Chan HH, Hsiao HC, et al. Primary Bedaquiline Resistance Among Cases of Drug-Resistant Tuberculosis in Taiwan. Front Microbiol, 2021, 12:754249. doi: 10.3389/fmicb.2021.754249.
doi: 10.3389/fmicb.2021.754249 URL |
[11] |
He W, Liu C, Liu D, et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China. J Glob Antimicrob Resist, 2021, 26:241-248. doi: 10.1016/j.jgar.2021.06.007.
doi: 10.1016/j.jgar.2021.06.007 URL |
[12] |
Huang H, Ding N, Yang T, et al. Cross-sectional Whole-genome Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis, 2019, 69(3):405-413. doi: 10.1093/cid/ciy883.
doi: 10.1093/cid/ciy883 URL |
[13] |
Liu Y, Gao M, Du J, et al. Reduced Susceptibility of Mycobacterium tuberculosis to Bedaquiline During Antituberculosis Treatment and Its Correlation With Clinical Outcomes in China. Clin Infect Dis, 2021, 73(9):e3391-e3397. doi: 10.1093/cid/ciaa1002.
doi: 10.1093/cid/ciaa1002 |
[14] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28:136-142. doi: 10.1016/j.ebiom.2018.01.005.
doi: S2352-3964(18)30005-7 pmid: 29337135 |
[15] |
Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3):1601719. doi: 10.1183/13993003.01719-2016.
doi: 10.1183/13993003.01719-2016 |
[16] |
Peretokina IV, Krylova LY, Antonova OV, et al. Reduced susceptibility and resistance to bedaquiline in clinical M.tuberculosis isolates. J Infect, 2020, 80(5):527-535. doi: 10.1016/j.jinf.2020.01.007.
doi: S0163-4453(20)30031-1 pmid: 31981638 |
[17] |
Kaniga K, Hasan R, Jou R, et al. Bedaquiline Drug Resistance Emergence Assessment in Multidrug-Resistant Tuberculosis (MDR-TB): a 5-Year Prospective In Vitro Surveillance Study of Bedaquiline and Other Second-Line Drug Susceptibility Testing in MDR-TB Isolates. J Clin Microbiol, 2022, 60(1):e291920. doi: 10.1128/JCM.02919-20.
doi: 10.1128/JCM.02919-20 |
[18] |
Mallick JS, Nair P, Abbew ET, et al. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist, 2022, 4(2):dlac029. doi: 10.1093/jacamr/dlac029.
doi: 10.1093/jacamr/dlac029 URL |
[19] |
Kunkel A, Cobelens FG, Cohen T. Tradeoffs in Introduction Policies for the Anti-Tuberculosis Drug Bedaquiline: A Model-Based Analysis. PLoS Med, 2016, 13(10):e1002142. doi: 10.1371/journal.pmed.1002142.
doi: 10.1371/journal.pmed.1002142 URL |
[20] |
Nimmo C, Millard J, van Dorp L, et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe, 2020, 1(4):e165-e174. doi: 10.1016/S2666-5247(20)30031-8.
doi: 10.1016/S2666-5247(20)30031-8 |
[21] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019, 63(9):e00915-19. doi: 10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19 |
[22] |
Mokrousov I, Akhmedova G, Molchanov V, et al. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment. Clin Microbiol Infect, 2021, 27(3):478-480. doi: 10.1016/j.cmi.2020.08.030.
doi: 10.1016/j.cmi.2020.08.030 URL |
[23] |
Kendall EA, Fofana MO, Dowdy DW. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med, 2015, 3(12):963-972. doi: 10.1016/S2213-2600(15)00458-0.
doi: 10.1016/S2213-2600(15)00458-0 pmid: 26597127 |
[24] |
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(5):2979-2981. doi: 10.1128/AAC.00037-14.
doi: 10.1128/AAC.00037-14 pmid: 24590481 |
[25] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi: 10.1093/jac/dkaa136.
doi: 10.1093/jac/dkaa136 pmid: 32361756 |
[26] |
Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 2017, 72(7):1901-1906. doi: 10.1093/jac/dkx094.
doi: 10.1093/jac/dkx094 pmid: 28387862 |
[27] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017, 61(10):e00900-17. doi: 10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17 |
[28] |
Ghodousi A, Hussain RA, Khanzada FM, et al. In vivo microevolution of Mycobacterium tuberculosis and transient emergence of atpE_Ala63Pro mutation during treatment in a pre-XDR TB patient. Eur Respir J, 2022, 59(3):2102102. doi: 10.1183/13993003.02102-2021.
doi: 10.1183/13993003.02102-2021 |
[29] |
Gomez-Gonzalez PJ, Perdigao J, Gomes P, et al. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep, 2021, 11(1):19431. doi: 10.1038/s41598-021-98862-4.
doi: 10.1038/s41598-021-98862-4 URL |
[30] |
Omar SV, Ismail F, Ndjeka N, et al. Bedaquiline-Resistant Tuberculosis Associated with Rv0678 Mutations. N Engl J Med, 2022, 386(1):93-94. doi: 10.1056/NEJMc2103049.
doi: 10.1056/NEJMc2103049 URL |
[31] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393 pmid: 30189463 |
[32] |
Kaniga K, Aono A, Borroni E, et al. Validation of Bedaquiline Phenotypic Drug Susceptibility Testing Methods and Breakpoints: a Multilaboratory, Multicountry Study. J Clin Microbiol, 2020, 58(4):e01677-19. doi: 10.1128/JCM.01677-19.
doi: 10.1128/JCM.01677-19 |
[33] |
Gashaw F, Erko B, Mekonnen Y, et al. Phenotypic and genotypic drug sensitivity profiles of Mycobacterium tuberculosis infection and associated factors in northeastern Ethiopia. BMC Infect Dis, 2021, 21(1):261. doi: 10.1186/s12879-021-05961-8.
doi: 10.1186/s12879-021-05961-8 pmid: 33711936 |
[34] |
Tiberi S, Cabibbe AM, Tomlins J, et al. Bedaquiline Phenotypic and Genotypic Susceptibility Testing, Work in Progress!EBioMedicine, 2018, 29:11-12. doi: 10.1016/j.ebiom.2018.02.006.
doi: 10.1016/j.ebiom.2018.02.006 |
[35] | World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. Geneva: World Health Organization, 2018. |
[36] | The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of Mics and Zone Diameters.Switzerland: 2020. |
[37] |
Ismail N, Riviere E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe, 2021, 2(11):e604-e616. doi: 10.1016/s2666-5247(21)00175-0.
doi: 10.1016/s2666-5247(21)00175-0 |
[38] |
Degiacomi G, Sammartino JC, Sinigiani V, et al. In vitro Study of Bedaquiline Resistance in Mycobacterium tuberculosis Multi-Drug Resistant Clinical Isolates. Front Microbiol, 2020, 11:559469. doi: 10.3389/fmicb.2020.559469.
doi: 10.3389/fmicb.2020.559469 URL |
[39] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9):2507-2510. doi: 10.1093/jac/dkv150.
doi: 10.1093/jac/dkv150 pmid: 26045528 |
[40] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8):4590-4599. doi: 10.1128/AAC.00753-16.
doi: 10.1128/AAC.00753-16 pmid: 27185800 |
[41] |
Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4):496-506. doi: 10.1016/S1473-3099(21)00470-9.
doi: 10.1016/S1473-3099(21)00470-9 URL |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||