中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (9): 966-972.doi: 10.19982/j.issn.1000-6621.20220242
收稿日期:
2022-06-27
出版日期:
2022-09-10
发布日期:
2022-09-05
通信作者:
梅轶芳
E-mail:myfyxd@163.com
基金资助:
Han Xu, Guan Shangqi, Shi Yinpeng, Mei Yifang()
Received:
2022-06-27
Online:
2022-09-10
Published:
2022-09-05
Contact:
Mei Yifang
E-mail:myfyxd@163.com
Supported by:
摘要:
类风湿关节炎是一种常见的慢性、炎症性自身免疫性疾病,多年来肿瘤坏死因子抑制剂(tumour necrosis factor inhibitors,TNFi)的应用为类风湿关节炎的治疗带来了划时代的进步,但其导致的不良风险,尤其是引起活动性结核病的发病率明显增加,越来越引起关注。而近年来非肿瘤坏死因子靶向药物治疗类风湿关节炎取得了良好的疗效,且越来越多的研究表明其引起活动性结核病的风险低于TNFi。笔者将对非肿瘤坏死因子靶向药物在治疗类风湿关节炎中的结核病风险进行综述,有助于指导存在结核分枝杆菌潜伏感染(latent tuberculosis infection,LTBI)的类风湿关节炎患者和结核病高流行地区的类风湿关节炎患者的药物选择。
中图分类号:
韩旭, 关尚琪, 石银朋, 梅轶芳. 非肿瘤坏死因子靶向药物治疗类风湿关节炎的结核感染风险研究进展[J]. 中国防痨杂志, 2022, 44(9): 966-972. doi: 10.19982/j.issn.1000-6621.20220242
Han Xu, Guan Shangqi, Shi Yinpeng, Mei Yifang. The risk of tuberculosis infection with non-tumor necrosis factor-targeted drugs in the treatment of rheumatoid arthritis[J]. Chinese Journal of Antituberculosis, 2022, 44(9): 966-972. doi: 10.19982/j.issn.1000-6621.20220242
[1] |
Sterling TR, Njie G, Zenner D, et al. Guidelines for the Treatment of Latent Tuberculosis Infection: Recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm Rep, 2020, 69(1): 1-11. doi: 10.15585/mmwr.rr6901a1.
doi: 10.15585/mmwr.rr6901a1 |
[2] |
肿瘤坏死因子拮抗剂应用中结核病预防与管理专家建议组. 肿瘤坏死因子拮抗剂应用中结核病预防与管理专家共识. 中华风湿病学杂志, 2013, 17(8): 508-512. doi: 10.3760/cma.j.issn.1007-7480.2013.08.002.
doi: 10.3760/cma.j.issn.1007-7480.2013.08.002 |
[3] |
Singh JA, Saag KG, Bridges SL Jr, et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res (Hoboken), 2016, 68(1): 1-25. doi: 10.1002/acr.22783.
doi: 10.1002/acr.22783 URL |
[4] |
Smolen JS, Landewé R, Bijlsma J, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis, 2017, 76(6): 960-977. doi: 10.1136/annrheumdis-2016-210715.
doi: 10.1136/annrheumdis-2016-210715 pmid: 28264816 |
[5] |
Mok CC. The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin Investig Drugs, 2019, 28(1): 85-92. doi: 10.1080/13543784.2019.1551358.
doi: 10.1080/13543784.2019.1551358 URL |
[6] |
Harrington R, Al Nokhatha SA, Conway R. JAK Inhibitors in Rheumatoid Arthritis: An Evidence-Based Review on the Emerging Clinical Data. J Inflamm Res, 2020, 13: 519-531. doi: 10.2147/JIR.S219586.
doi: 10.2147/JIR.S219586 pmid: 32982367 |
[7] |
Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov, 2017, 17(1): 78. doi: 10.1038/nrd.2017.267.
doi: 10.1038/nrd.2017.267 URL |
[8] |
Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev, 2009, 228(1): 273-287. doi: 10.1111/j.1600-065X.2008.00754.x.
doi: 10.1111/j.1600-065X.2008.00754.x pmid: 19290934 |
[9] |
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK 2 missense variant. Sci Immunol, 2018, 3(30): eaau8714. doi: 10.1126/sciimmunol.aau8714.
doi: 10.1126/sciimmunol.aau8714 URL |
[10] |
Schwartz DM, Bonelli M, Gadina M, et al. Type Ⅰ/Ⅱ cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol, 2016, 12(1):25-36. doi: 10.1038/nrrheum.2015.167.
doi: 10.1038/nrrheum.2015.167 URL |
[11] |
Winthrop KL, Park SH, Gul A, et al. Tuberculosis and other opportunistic infections in tofacitinib-treated patients with rheumatoid arthritis. Ann Rheum Dis, 2016, 75(6): 1133-1138. doi: 10.1136/annrheumdis-2015-207319.
doi: 10.1136/annrheumdis-2015-207319 pmid: 26318385 |
[12] |
Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann Rheum Dis, 2017, 76 (7): 1253-1262. doi: 10.1136/annrheumdis-2016-210457.
doi: 10.1136/annrheumdis-2016-210457 URL |
[13] |
Wollenhaupt J, Lee EB, Curtis JR, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res Ther, 2019, 21(1): 89. doi: 10.1186/s13075-019-1866-2.
doi: 10.1186/s13075-019-1866-2 pmid: 30953540 |
[14] |
van der Heijde D, Strand V, Tanaka Y, et al. Tofacitinib in Combination With Methotrexate in Patients With Rheumatoid Arthritis: Clinical Efficacy, Radiographic, and Safety Outcomes From a Twenty-Four-Month, Phase Ⅲ Study. Arthritis Rheumatol, 2019, 71(6): 878-891. doi: 10.1002/art.40803.
doi: 10.1002/art.40803 URL |
[15] |
Cohen SB, Tanaka Y, Mariette X, et al. Long-term safety of tofacitinib up to 9.5 years: a comprehensive integrated analysis of the rheumatoid arthritis clinical development programme. RMD Open, 2020, 6(3): e001395. doi: 10.1136/rmdopen-2020-001395.
doi: 10.1136/rmdopen-2020-001395 URL |
[16] |
Tanaka Y, Sugiyama N, Toyoizumi S, et al. Modified-versus immediate-release tofacitinib in Japanese rheumatoid arthritis patients: a randomized, phase Ⅲ, non-inferiority study. Rheumatology (Oxford), 2019, 58(1):70-79. doi: 10.1093/rheumatology/key250.
doi: 10.1093/rheumatology/key250 URL |
[17] |
Mori S, Ueki Y. Outcomes of dose reduction, withdrawal, and restart of tofacitinib in patients with rheumatoid arthritis: a prospective observational study. Clin Rheumatol, 2019, 38(12): 3391-3400. doi: 10.1007/s10067-019-04721-z.
doi: 10.1007/s10067-019-04721-z URL |
[18] |
Mueller RB, Hasler C, Popp F, et al. Effectiveness, Tolerability, and Safety of Tofacitinib in Rheumatoid Arthritis: A Retrospective Analysis of Real-World Data from the St. Gallen and Aarau Cohorts. J Clin Med, 2019, 8(10): 1548. doi: 10.3390/jcm8101548.
doi: 10.3390/jcm8101548 URL |
[19] |
Maiga M, Ahidjo BA, Maiga MC, et al. Efficacy of Adjunctive Tofacitinib Therapy in Mouse Models of Tuberculosis. EBioMedicine, 2015, 2(8):868-873. doi: 10.1016/j.ebiom.2015.07.014.
doi: 10.1016/j.ebiom.2015.07.014 URL |
[20] |
Panteleev AV, Nikitina IY, Burmistrova IA, et al. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD 4 T-Cell Response. Front Immunol, 2017, 8: 963. doi: 10.3389/fimmu.2017.00963.
doi: 10.3389/fimmu.2017.00963 URL |
[21] |
Evangelatos G, Koulouri V, Iliopoulos A, et al. Tuberculosis and targeted synthetic or biologic DMARDs, beyond tumor necrosis factor inhibitors. Ther Adv Musculoskelet Dis, 2020, 12: 1759720X20930116. doi: 10.1177/1759720X20930116.
doi: 10.1177/1759720X20930116 |
[22] |
Smolen JS, Genovese MC, Takeuchi T, et al. Safety Profile of Baricitinib in Patients with Active Rheumatoid Arthritis with over 2 Years Median Time in Treatment. J Rheumatol, 2019, 46 (1): 7-18. doi: 10.3899/jrheum.171361.
doi: 10.3899/jrheum.171361 pmid: 30219772 |
[23] |
Chen YC, Yoo DH, Lee CK, et al. Safety of baricitinib in East Asian patients with moderate-to-severe active rheumatoid arthritis: An integrated analysis from clinical trials. Int J Rheum Dis, 2020, 23(1): 65-73. doi: 10.1111/1756-185X.13748.
doi: 10.1111/1756-185X.13748 URL |
[24] |
Taylor PC, Takeuchi T, Burmester GR, et al. Safety of barici-tinib for the treatment of rheumatoid arthritis over a median of 4.6 and up to 9.3 years of treatment: final results from long-term extension study and integrated database. Ann Rheum Dis, 2022, 81(3): 335-343. doi: 10.1136/annrheumdis-2021-221276.
doi: 10.1136/annrheumdis-2021-221276 URL |
[25] |
Genoves M, Smolen J, Takeuchi T, et al. Safety profile of baricitinib for the treatment of rheumatoid arthritis up to 7 years: an updated integrated safety analysis. Arthritis Rheum, 2019, 71:1461-1463. doi: 10.1016/S2665-9913(20)30032-1.
doi: 10.1016/S2665-9913(20)30032-1 |
[26] |
Harigai M, Takeuchi T, Smolen JS, et al. Safety profile of baricitinib in Japanese patients with active rheumatoid arthritis with over 1.6 years median time in treatment: An integrated analysis of Phases 2 and 3 trials. Mod Rheumatol, 2020, 30(1): 36-43. doi: 10.1080/14397595.2019.1583711.
doi: 10.1080/14397595.2019.1583711 URL |
[27] |
Keystone EC, Genovese MC, Schlichting DE, et al. Safety and Efficacy of Baricitinib Through 128 Weeks in an Open-label, Longterm Extension Study in Patients with Rheumatoid Arthritis. J Rheumatol, 2018, 45(1): 14-21. doi: 10.3899/jrheum.161161.
doi: 10.3899/jrheum.161161 pmid: 28811354 |
[28] |
Alves C, Penedones A, Mendes D, et al. The Risk of Infections Associated With JAK Inhibitors in Rheumatoid Arthritis: A Systematic Review and Network Meta-analysis. J Clin Rheumatol, 28(2): e407-e414. doi: 10.1097/RHU.0000000000001749.
doi: 10.1097/RHU.0000000000001749 |
[29] |
Fleischmann R, Pangan AL, Song IH, et al. Upadacitinib Versus Placebo or Adalimumab in Patients With Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Phase Ⅲ, Double-Blind, Randomized Controlled Trial. Arthritis Rheumatol, 2019, 71(11): 1788-1800. doi: 10.1002/art.41032.
doi: 10.1002/art.41032 |
[30] |
Smolen JS, Pangan AL, Emery P, et al. Upadacitinib as monotherapy in patients with active rheumatoid arthritis and inadequate response to methotrexate (SELECT-MONOTHERAPY): a randomised, placebo-controlled, double-blind phase 3 study. Lancet, 2019, 393 (10188): 2303-2311. doi: 10.1016/S0140-6736(19)30419-2.
doi: S0140-6736(19)30419-2 pmid: 31130260 |
[31] |
Genovese MC, Greenwald M, Codding C, et al. Peficitinib, a JAK Inhibitor, in Combination With Limited Conventional Synthetic Disease-Modifying Antirheumatic Drugs in the Treatment of Moderate-to-Severe Rheumatoid Arthritis. Arthritis Rheumatol, 2017, 69 (5): 932-942. doi: 10.1002/art.40054.
doi: 10.1002/art.40054 URL |
[32] |
Genovese MC, Kalunian K, Gottenberg JE, et al. Effect of Filgotinib vs Placebo on Clinical Response in Patients With Moderate to Severe Rheumatoid Arthritis Refractory to Disease-Modifying Antirheumatic Drug Therapy: The FINCH 2 Randomized Clinical Trial. JAMA, 2019, 322(4): 315-325. doi: 10.1001/jama.2019.9055.
doi: 10.1001/jama.2019.9055 pmid: 31334793 |
[33] |
Kavanaugh A, Kremer J, Ponce L, et al. Filgotinib (GLPG0634/GS-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann Rheum Dis, 2017, 76(6): 1009-1019. doi: 10.1136/annrheumdis-2016-210105.
doi: 10.1136/annrheumdis-2016-210105 pmid: 27993828 |
[34] |
Kivitz AJ, Gutierrez-Ureña SR, Poiley J, et al. Peficitinib, a JAK Inhibitor, in the Treatment of Moderate-to-Severe Rheumatoid Arthritis in Patients With an Inadequate Response to Methotrexate. Arthritis Rheumatol, 2017, 69(4): 709-719. doi: 10.1002/art.39955.
doi: 10.1002/art.39955 URL |
[35] |
Westhovens R, Taylor PC, Alten R, et al. Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann Rheum Dis, 2017, 76(6): 998-1008. doi: 10.1136/annrheumdis-2016-210104.
doi: 10.1136/annrheumdis-2016-210104 pmid: 27993829 |
[36] |
Cantini F, Blandizzi C, Niccoli L, et al. Systematic review on tuberculosis risk in patients with rheumatoid arthritis receiving inhibitors of Janus Kinases. Expert Opin Drug Saf, 2020, 19(7): 861-872. doi: 10.1080/14740338.2020.1774550.
doi: 10.1080/14740338.2020.1774550 URL |
[37] |
Saunders BM, Frank AA, Orme IM, et al. Interleukin-6 induces early gamma interferon production in the infected lung but is not required for generation of specific immunity to Mycobacterium tuberculosis infection. Infect Immun, 2000, 68 (6): 3322-3326. doi: 10.1128/IAI.68.6.3322-3326.2000.
doi: 10.1128/IAI.68.6.3322-3326.2000 pmid: 10816480 |
[38] |
Ogata A, Mori M, Hashimoto S, et al. Minimal influence of tocilizumab on IFN-gamma synthesis by tuberculosis antigens. Mod Rheumatol, 2010, 20(2):130-133. doi: 10.1007/s10165-009-0243-4.
doi: 10.1007/s10165-009-0243-4 URL |
[39] |
Koike T, Harigai M, Inokuma S, et al. Postmarketing surveillance of tocilizumab for rheumatoid arthritis in Japan: interim analysis of 3881 patients. Ann Rheum Dis, 2011, 70(12): 2148-2151. doi: 10.1136/ard.2011.151092.
doi: 10.1136/ard.2011.151092 URL |
[40] |
Souto A, Maneiro JR, Salgado E, et al. Risk of tuberculosis in patients with chronic immune-mediated inflammatory diseases treated with biologics and tofacitinib: a systematic review and meta-analysis of randomized controlled trials and long-term extension studies. Rheumatology (Oxford), 2014, 53(10): 1872-1885. doi: 10.1093/rheumatology/keu172.
doi: 10.1093/rheumatology/keu172 URL |
[41] |
Cantini F, Nannini C, Niccoli L, et al. Risk of Tuberculosis Reactivation in Patients with Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis Receiving Non-Anti-TNF-Targeted Biologics. Mediators Inflamm, 2017, 2017: 8909834. doi: 10.1155/2017/8909834.
doi: 10.1155/2017/8909834 |
[42] |
Cantini F, Niccoli L, Goletti D. Tuberculosis risk in patients treated with non-anti-tumor necrosis factor-α (TNF-α) targeted biologics and recently licensed TNF-α inhibitors: data from clinical trials and national registries. J Rheumatol Suppl, 2014, 91: 56-64. doi: 10.3899/jrheum.140103.
doi: 10.3899/jrheum.140103 |
[43] |
Rutherford AI, Patarata E, Subesinghe S, et al. Opportunistic infections in rheumatoid arthritis patients exposed to biologic therapy: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology (Oxford), 2018, 57 (6): 997-1001. doi: 10.1093/rheumatology/key023.
doi: 10.1093/rheumatology/key023 pmid: 29529307 |
[44] |
Tan BE, Lim AL, Kan SL, et al. Real-world clinical experience of biological disease modifying anti-rheumatic drugs in Malaysia rheumatoid arthritis patients. Rheumatol Int, 2017, 37 (10): 1719-1725. doi: 10.1007/s00296-017-3772-8.
doi: 10.1007/s00296-017-3772-8 URL |
[45] |
Cuomo G, D’Abrosca V, Iacono D, et al. The conversion rate of tuberculosis screening tests during biological therapies in patients with rheumatoid arthritis. Clin Rheumatol, 2017, 36 (2): 457-461. doi: 10.1007/s10067-016-3462-z.
doi: 10.1007/s10067-016-3462-z URL |
[46] |
Cerda OL, de Los Angeles Correa M, Granel A, et al. Tuberculin test conversion in patients with chronic inflammatory arthritis receiving biological therapy. Eur J Rheumatol, 2019, 6: 19-22. doi: 10.5152/eurjrheum.2018.18096.
doi: 10.5152/eurjrheum.2018.18096 URL |
[47] |
Shobha V, Chandrashekara S, Rao V, et al. Biologics and risk of tuberculosis in autoimmune rheumatic diseases: A real-world clinical experience from India. Int J Rheum Dis, 2019, 22 (2): 280-287. doi: 10.1111/1756-185X.13376.
doi: 10.1111/1756-185X.13376 URL |
[48] |
Sakai R, Cho SK, Nanki T, et al. Head-to-head comparison of the safety of tocilizumab and tumor necrosis factor inhibitors in rheumatoid arthritis patients (RA) in clinical practice: results from the registry of Japanese RA patients on biologics for long-term safety (REAL) registry. Arthritis Res Ther, 2015, 17(1): 74. doi: 10.1186/s13075-015-0583-8.
doi: 10.1186/s13075-015-0583-8 URL |
[49] |
Lim CH, Chen HH, Chen YH, et al. The risk of tuberculosis disease in rheumatoid arthritis patients on biologics and targeted therapy: A 15-year real world experience in Taiwan. PLoS One, 2017, 12(6): e0178035. doi: 10.1371/journal.pone.0178035.
doi: 10.1371/journal.pone.0178035 URL |
[50] |
Lin CT, Huang WN, Hsieh CW, et al. Safety and effectiveness of tocilizumab in treating patients with rheumatoid arthritis-A three-year study in Taiwan. J Microbiol Immunol Infect, 2019, 52(1): 141-150. doi: 10.1016/j.jmii.2017.04.002.
doi: 10.1016/j.jmii.2017.04.002 URL |
[51] |
Yonekura CL, Oliveira RDR, Titton DC, et al. Incidence of tuberculosis among patients with rheumatoid arthritis using TNF blockers in Brazil: data from the Brazilian Registry of Biological Therapies in Rheumatic Diseases (Registro Brasileiro de Monitoração de Terapias Biológicas-BiobadaBrasil). Rev Bras Reumatol Engl Ed, 2017,57 Suppl 2: 477-483. doi: 10.1016/j.rbre.2017.05.005.
doi: 10.1016/j.rbre.2017.05.005 |
[52] |
Lee EB. A review of sarilumab for the treatment of rheumatoid arthritis. Immunotherapy, 2018, 10(1): 57-65. doi: 10.2217/imt-2017-0075.
doi: 10.2217/imt-2017-0075 URL |
[53] |
Weinblatt ME, Mease P, Mysler E, et al. The efficacy and safety of subcutaneous clazakizumab in patients with moderate-to-severe rheumatoid arthritis and an inadequate response to methotrexate: results from a multinational, phase Ⅱb, randomized, double-blind, placebo/active-controlled, dose-ranging study. Arthritis Rheumatol, 2015, 67(10):2591-2600. doi: 10.1002/art.39249.
doi: 10.1002/art.39249 URL |
[54] |
Aletaha D, Bingham CO 3rd, Tanaka Y, et al. Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomi-sed, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study. Lancet, 2017, 389(10075): 1206-1217. doi: 10.1016/S0140-6736(17)30401-4.
doi: S0140-6736(17)30401-4 pmid: 28215362 |
[55] |
Takeuchi T, Thorne C, Karpouzas G, et al. Sirukumab for rheumatoid arthritis: the phase Ⅲ SIRROUND-D study. Ann Rheum Dis, 2017, 76 (12): 2001-2008. doi: 10.1136/annrheumdis-2017-211328.
doi: 10.1136/annrheumdis-2017-211328 pmid: 28855173 |
[56] |
Takeuchi T, Yamanaka H, Harigai M, et al. Sirukumab in rheumatoid arthritis refractory to sulfasalazine or methotrexate: a randomized phase 3 safety and efficacy study in Japanese patients. Arthritis Res Ther, 2018, 20(1): 42. doi: 10.1186/s13075-018-1536-9.
doi: 10.1186/s13075-018-1536-9 |
[57] |
Taylor PC, Schiff MH, Wang Q, et al. Efficacy and safety of monotherapy with sirukumab compared with adalimumab monotherapy in biologic-naïve patients with active rheumatoid arthritis (SIRROUND-H): a randomised, double-blind, parallel-group, multinational, 52-week, phase 3 study. Ann Rheum Dis, 2018, 77(5):658-666. doi: 10.1136/annrheumdis-2017-212496.
doi: 10.1136/annrheumdis-2017-212496 pmid: 29483080 |
[58] |
Bonelli M, Scheinecker C. How does abatacept really work in rheumatoid arthritis? Curr Opin Rheumatol, 2018, 30(3): 295-300. doi: 10.1097/BOR.0000000000000491.
doi: 10.1097/BOR.0000000000000491 URL |
[59] |
Bigbee CL, Gonchoroff DG, Vratsanos G, et al. Abatacept treatment does not exacerbate chronic Mycobacterium tuberculosis infection in mice. Arthritis Rheum, 2007, 56: 2557-2565. doi: 10.1002/art.22750.
doi: 10.1002/art.22750 URL |
[60] |
Simon TA, Boers M, Hochberg M, et al. Comparative risk of malignancies and infections in patients with rheumatoid arthritis initiating abatacept versus other biologics: a multi-database real-world study. Arthritis Res Ther, 2019, 21 (1): 228. doi: 10.1186/s13075-019-1992-x.
doi: 10.1186/s13075-019-1992-x URL |
[61] |
Cantini F, Niccoli L, Capone A, et al. Risk of tuberculosis reactivation associated with traditional disease modifying anti-rheumatic drugs and non-anti-tumor necrosis factor biologics in patients with rheumatic disorders and suggestion for clinical practice. Expert Opin Drug Saf, 2019, 18(5): 415-425. doi: 10.1080/14740338.2019.1612872.
doi: 10.1080/14740338.2019.1612872 URL |
[62] |
Weinblatt ME, Moreland LW, Westhovens R, et al. Safety of abatacept administered intravenously in treatment of rheumatoid arthritis: integrated analyses of up to 8 years of treatment from the abatacept clinical trial program. J Rheumatol, 2013, 40 (6): 787-797. doi: 10.3899/jrheum.120906.
doi: 10.3899/jrheum.120906 pmid: 23588946 |
[63] |
Takahashi N, Kojima T, Kaneko A, et al. Longterm efficacy and safety of abatacept in patients with rheumatoid arthritis treated in routine clinical practice: effect of concomitant methotrexate after 24 weeks. J Rheumatol, 2015, 42(5): 786-793. doi: 10.3899/jrheum.141288.
doi: 10.3899/jrheum.141288 pmid: 25834204 |
[64] |
Harigai M, Ishiguro N, Inokuma S, et al. Postmarketing surveillance of the safety and effectiveness of abatacept in Japanese patients with rheumatoid arthritis. Mod Rheumatol, 2016, 26(4): 491-498. doi: 10.3109/14397595.2015.1123211.
doi: 10.3109/14397595.2015.1123211 URL |
[65] |
Salmon JH, Gottenberg JE, Ravaud P, et al. Predictive risk factors of serious infections in patients with rheumatoid arthritis treated with abatacept in common practice: results from the Orencia and Rheumatoid Arthritis (ORA) registry. Ann Rheum Dis, 2016, 75(6): 1108-1113. doi: 10.1136/annrheumdis-2015-207362.
doi: 10.1136/annrheumdis-2015-207362 pmid: 26048170 |
[66] |
van Vollenhoven RF, Emery P, Bingham CO 3rd, et al. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann Rheum Dis, 2013, 72 (9): 1496-1502. doi: 10.1136/annrheumdis-2012-201956.
doi: 10.1136/annrheumdis-2012-201956 pmid: 23136242 |
[67] |
Chen YM, Chen HH, Lai KL, et al. The effects of rituximab therapy on released interferon-γ levels in the QuantiFERON assay among RA patients with different status of Mycobacterium tuberculosis infection. Rheumatology (Oxford), 2013, 52(4): 697-704. doi: 10.1093/rheumatology/kes365.
doi: 10.1093/rheumatology/kes365 URL |
[68] | Alkadi A, Alduaiji N, Alrehaily A. Risk of tuberculosis reactivation with rituximab therapy. Int J Health Sci (Qassim), 2017, 11(2):41-44. |
[69] |
Liao TL, Lin CH, Chen YM, et al. Different Risk of Tuberculosis and Efficacy of Isoniazid Prophylaxis in Rheumatoid Arthritis Patients with Biologic Therapy: A Nationwide Retrospective Cohort Study in Taiwan. PLoS One, 2016, 11(4): e0153217. doi: 10.1371/journal.pone.0153217.
doi: 10.1371/journal.pone.0153217 URL |
[70] |
Nisar MK, Rafiq A, Östör AJ. Biologic therapy for inflammatory arthritis and latent tuberculosis: real world experience from a high prevalence area in the United Kingdom. Clin Rheumatol, 2015, 34 (12): 2141-2145. doi: 10.1007/s10067-015-3099-3.
doi: 10.1007/s10067-015-3099-3 URL |
[71] | British Society for Rheumatology. Guidelines for prescribing TNF-α blockers in adults with rheumatoid arthritis. London: British Society for Rheumatology, 2001. |
[72] |
Ledingham J, Deighton C, British Society for Rheumatology Standards, et al. Update on the British Society for Rheumatology guidelines for prescribing TNFalpha blockers in adults with rheumatoid arthritis (update of previous guidelines of April 2001). Rheumatology (Oxford), 2005, 44(2): 157-163. doi: 10.1093/rheumatology/keh464.
doi: 10.1093/rheumatology/keh464 URL |
[73] |
Ding T, Ledingham J, Luqmani R, et al. BSR and BHPR rheumatoid arthritis guidelines on safety of anti-TNF therapies. Rheumatology (Oxford), 2010, 49(11): 2217-2219. doi: 10.1093/rheumatology/keq249a.
doi: 10.1093/rheumatology/keq249a URL |
[74] |
Bukhari M, Abernethy R, Deighton C, et al. BSR and BHPR guidelines on the use of rituximab in rheumatoid arthritis. Rheumatology (Oxford), 2011, 50(12): 2311-2313. doi: 10.1093/rheumatology/ker106a.
doi: 10.1093/rheumatology/ker106a pmid: 21546351 |
[75] |
Malaviya AP, Ledingham J, Bloxham J, et al. The 2013 BSR and BHPR guideline for the use of intravenous tocilizumab in the treatment of adult patients with rheumatoid arthritis. Rheumatology (Oxford), 2014, 53(7): 1344-1346. doi: 10.1093/rheumatology/keu168.
doi: 10.1093/rheumatology/keu168 URL |
[76] |
Furst DE, Cush J, Kaufmann S, et al. Preliminary guidelines for diagnosing and treating tuberculosis in patients with rheumatoid arthritis in immunosuppressive trials or being treated with biological agents. Ann Rheum Dis, 2002, 61 Suppl 2(Suppl 2):ii62-3. doi: 10.1136/ard.61.suppl_2.ii62.
doi: 10.1136/ard.61.suppl_2.ii62 |
[77] |
Mariette X, Salmon D. French guidelines for diagnosis and treating latent and active tuberculosis in patients with RA treated with TNF blockers. Ann Rheum Dis, 2003, 62(8): 791. doi: 10.1136/ard.62.8.791.
doi: 10.1136/ard.62.8.791 pmid: 12860745 |
[78] |
Holroyd CR, Seth R, Bukhari M, et al. The British Society for Rheumatology biologic DMARD safety guidelines in inflammatory arthritis. Rheumatology (Oxford), 2019, 58(2): e3-e42. doi: 10.1093/rheumatology/key208.
doi: 10.1093/rheumatology/key208 |
[79] |
Lau CS, Chia F, Dans L, et al. 2018 update of the APLAR recommendations for treatment of rheumatoid arthritis. Int J Rheum Dis, 2019, 22(3): 357-375. doi: 10.1111/1756-185X.13513.
doi: 10.1111/1756-185X.13513 URL |
[1] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[4] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[5] | 宋云林, 布祖克拉·阿布都艾尼, 王桂荣, 张继园, 鲁晓擘. 钙结合蛋白S100A12与中性粒细胞胞外诱捕网形成在重症肺结核患者肺损伤中作用机制研究进展[J]. 中国防痨杂志, 2025, 47(4): 513-519. |
[6] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[7] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[8] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[9] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[10] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[11] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[12] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[13] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[14] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[15] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||