中国防痨杂志 ›› 2026, Vol. 48 ›› Issue (1): 153-159.doi: 10.19982/j.issn.1000-6621.20250287
收稿日期:2025-07-10
出版日期:2026-01-10
发布日期:2025-12-31
通信作者:
范琳
E-mail:fanlinsj@163.com
基金资助:Received:2025-07-10
Online:2026-01-10
Published:2025-12-31
Contact:
Fan Lin
E-mail:fanlinsj@163.com
Supported by:摘要:
结核病是一种与营养不良紧密相关的慢性消耗性传染病。结核病患者可通过慢性炎症反应、胃肠道吸收障碍和多器官受累等途径导致营养不良,后者可通过多种机制削弱患者的免疫防御能力,从而影响其治疗转归。因此,营养不良在影响结核病患者治疗转归及预后的基础上进一步增加结核病的发病风险。个体化的营养干预,特别是高蛋白、高热量饮食和微量营养素补充,能够显著改善结核病患者的预后。本文系统综述了营养不良与结核病的双向恶性循环关系、结核病导致营养不良的病理生理机制,以及营养不良通过降低细胞免疫功能、扰乱代谢平衡和加剧慢性炎症影响结核病治疗结局的分子机制;进一步分析高蛋白高热量饮食、维生素D与微量元素补充,以及脂肪酸干预等营养支持策略在改善结核病患者体质量、免疫功能及治疗转归方面的临床研究证据,旨在为结核病患者的营养支持治疗提供理论依据,并为优化临床实践和公共卫生策略提供科学参考。
中图分类号:
热依汗古丽·阿肯, 范琳. 营养不良影响结核病患者治疗转归的相关研究进展[J]. 中国防痨杂志, 2026, 48(1): 153-159. doi: 10.19982/j.issn.1000-6621.20250287
Reyihanguli Aken, Fan Lin. Research progress on the impact of malnutrition on the treatment outcomes of tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2026, 48(1): 153-159. doi: 10.19982/j.issn.1000-6621.20250287
| [1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
| [2] | Tellez-Navarrete NA, Ramon-Luing LA, Muñoz-Torrico M, et al. Malnutrition and tuberculosis: the gap between basic research and clinical trials. J Infect Dev Ctries, 2021, 15(3):310-319. doi:10.3855/jidc.12821. |
| [3] |
Sinha P, Davis J, Saag L, et al. Undernutrition and tuberculosis: public health implications. J Infect Dis, 2019, 219(9):1356-1363. doi:10.1093/infdis/jiy675.
pmid: 30476125 |
| [4] | Bhargava A, Chatterjee M, Jain Y, et al. Nutritional status of adult patients with pulmonary tuberculosis in rural central India and its association with mortality. PLoS One, 2013, 8(10):e77979. doi:10.1371/journal.pone.0077979. |
| [5] |
Cegielski JP, McMurray DN. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis, 2004, 8(3):286-298.
pmid: 15139466 |
| [6] |
Siritientong T, Thet D. Nutritional assessment in the HIV-infected older population receiving antiretroviral therapy. AIDS Rev, 2021, 24(4):153-161. doi:10.24875/AIDSRev.21000051.
pmid: 34936643 |
| [7] |
Keats EC, Das JK, Salam RA, et al. Effective interventions to address maternal and child malnutrition: an update of the evidence. Lancet Child Adolesc Health, 2021, 5(5):367-384. doi:10.1016/S2352-4642(20)30274-1.
pmid: 33691083 |
| [8] | van Crevel R, Karyadi E, Netea MG, et al. Decreased plasma leptin concentrations in tuberculosis patients are associated with wasting and inflammation. J Clin Endocrinol Metab, 2002, 87(2):758-763. doi:10.1210/jcem.87.2.8224. |
| [9] |
Ockenga J, Fuhse K, Chatterjee S, et al. Tuberculosis and malnutrition: The European perspective. Clin Nutr, 2023, 42(4):486-492. doi:10.1016/j.clnu.2023.01.016.
pmid: 36857957 |
| [10] | Chan J, Tian Y, Tanaka KE, et al. Effects of protein calorie malnutrition on tuberculosis in mice. Proc Natl Acad Sci U S A, 1996, 93(25):14857-14861. doi:10.1073/pnas.93.25.14857. |
| [11] | Rytter MJ, Kolte L, Briend A, et al. The immune system in children with malnutrition—a systematic review. PLoS One, 2014, 9(8):e105017. doi:10.1371/journal.pone.0105017. |
| [12] | Rajamanickam A, Kothandaraman SP, Kumar NP, et al. Cytokine and chemokine profiles in pulmonary tuberculosis with pre-diabetes. Front Immunol, 2024, 15: 1447161. doi:10.3389/fimmu.2024.1447161. |
| [13] |
Yeom E, Yu K. Understanding the molecular basis of anorexia and tissue wasting in cancer cachexia. Exp Mol Med, 2022, 54(4):426-432. doi:10.1038/s12276-022-00752-w.
pmid: 35388147 |
| [14] |
Al-Zanbagi AB, Shariff MK. Gastrointestinal tuberculosis: A systematic review of epidemiology, presentation, diagnosis and treatment. Saudi J Gastroenterol, 2021, 27(5):261-274. doi:10.4103/sjg.sjg_148_21.
pmid: 34213424 |
| [15] |
Shaw JA, Koegelenberg CFN. Pleural Tuberculosis. Clin Chest Med, 2021, 42(4):649-666. doi:10.1016/j.ccm.2021.08.002.
pmid: 34774172 |
| [16] | Ketata W, Rekik WK, Ayadi H, et al. Extrapulmonary tuberculosis. Rev Pneumol Clin, 2015, 71(2/3):83-92. doi:10.1016/j.pneumo.2014.04.001. |
| [17] | Savino W, Dardenne M, Velloso LA, et al. The thymus is a common target in malnutrition and infection. Br J Nutr, 2007, 98 Suppl 1::S11-S16. doi:10.1017/S0007114507832880. |
| [18] |
Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev, 2008, 226:191-204. doi:10.1111/j.1600-065X.2008.00702.x.
pmid: 19161425 |
| [19] |
Cegielski JP, McMurray DN. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis, 2004, 8(3):286-298.
pmid: 15139466 |
| [20] | Rytter MJ, Kolte L, Briend A, et al. The immune system in children with malnutrition-a systematic review. PLoS One, 2014, 9(8):e105017. doi:10.1371/journal.pone.0105017. |
| [21] |
MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol, 2013, 31:259-283. doi:10.1146/annurev-immunol-032712-095956.
pmid: 23298210 |
| [22] |
Matarese G, La Cava A, Sanna V, et al. Balancing susceptibility to infection and autoimmunity: a role for leptin?. Trends Immunol, 2002, 23(4):182-187. doi:10.1016/s1471-4906(02)02188-9.
pmid: 11923112 |
| [23] | Abend Bardagi A, Dos Santos Paschoal C, Favero GG, et al. Leptin’s Immune Action: A Review Beyond Satiety. Immunol Invest, 2023, 52(1):117-133. doi:10.1080/08820139.2022.2129381. |
| [24] | Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect, 2020, 80(6): e19-e26. doi:10.1016/j.jinf.2020.03.003. |
| [25] |
Procaccini C, La Rocca C, Carbone F, et al. Leptin as immune mediator: interaction between neuroendocrine and immune system. Dev Comp Immunol, 2017, 66:120-129. doi:10.1016/j.dci.2016.06.006.
pmid: 27288847 |
| [26] |
Periyasamy KM, Ranganathan UD, Tripathy SP, et al. Vitamin D-A host directed autophagy mediated therapy for tuberculosis. Mol Immunol, 2020, 127:238-244. doi:10.1016/j.molimm.2020.08.007.
pmid: 33039674 |
| [27] | Ross AC. Vitamin A and retinoic acid in T cell-related immunity. Am J Clin Nutr, 2012, 96(5):1166S-1172S. doi:10.3945/ajcn.112.034637. |
| [28] | Leal JM, Huang JY, Kohli K, et al. Innate cell microenvironments in lymph nodes shape the generation of T cell responses during type I inflammation. Sci Immunol, 2021, 6(56): eabb9435. doi:10.1126/sciimmunol.abb9435. |
| [29] |
Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, 311(5768):1770-1773. doi:10.1126/science.1123933.
pmid: 16497887 |
| [30] | Yuk JM, Shin DM, Lee HM, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, 6(3):231-243. doi:10.1016/j.chom.2009.08.004. |
| [31] | Fabri M, Stenger S, Shin DM, et al. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med, 2011, 3(104):104ra102. doi:10.1126/scitranslmed.3003045. |
| [32] |
Chun RF, Liu PT, Modlin RL, et al. Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol, 2014, 5:151. doi:10.3389/fphys.2014.00151.
pmid: 24795646 |
| [33] |
Lobo JC, Stockler-Pinto MB, Farage NE, et al. Reduced plasma zinc levels, lipid peroxidation, and inflammation biomarkers levels in hemodialysis patients: implications to cardiovascular mortality. Ren Fail, 2013, 35(5):680-685. doi:10.3109/0886022X.2013.789960.
pmid: 23650973 |
| [34] |
Haase H, Rink L. Functional significance of zinc-related signaling pathways in immune cells. Annu Rev Nutr, 2009, 29:133-152. doi:10.1146/annurev-nutr-080508-141119.
pmid: 19400701 |
| [35] | 黄庆. 活动性肺结核及潜伏结核感染者外周血中锌离子及锌离子转运体ZIP2的研究. 济南: 山东大学, 2015. |
| [36] | Shi L, Salamon H, Eugenin EA, et al. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep, 2015, 5:18176. doi:10.1038/srep18176. |
| [37] |
Gleeson LE, Sheedy FJ, Palsson-McDermott EM, et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol, 2016, 196(6):2444-2449. doi:10.4049/jimmunol.1501612.
pmid: 26873991 |
| [38] | Patti G, Pellegrino C, Ricciardi A, et al. Potential Role of Vitamins A, B, C, D and E in TB Treatment and Prevention: A Narrative Review. Antibiotics (Basel), 2021, 10(11):1354. doi:10.3390/antibiotics10111354. |
| [39] | Wan F, Feng X, Yin J, et al. Distinct H2O2-Scavenging System in Yersinia pseudotuberculosis: KatG and AhpC Act Together to Scavenge Endogenous Hydrogen Peroxide. Front Microbiol, 2021, 12:626874. doi:10.3389/fmicb.2021.626874. |
| [40] |
Argilés JM, Busquets S, Stemmler B, et al. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 2014, 14(11):754-762. doi:10.1038/nrc3829.
pmid: 25291291 |
| [41] | Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014, 307(6):E469-E484. doi:10.1152/ajpendo.00204.2014. |
| [42] |
Braun TP, Marks DL. The regulation of muscle mass by endogenous glucocorticoids. Front Physiol, 2015, 6:12. doi:10.3389/fphys.2015.00012.
pmid: 25691871 |
| [43] |
Wueest S, Laesser CI, Böni-Schnetzler M, et al. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion. Diabetes, 2018, 67(1):36-45. doi:10.2337/db17-0637.
pmid: 29066599 |
| [44] | Akalu TY, Clements ACA, Liyew AM, et al. Risk factors associated with post-tuberculosis sequelae: a systematic review and meta-analysis. EClinicalMedicine, 2024, 77:102898. doi:10.1016/j.eclinm.2024.102898. |
| [45] |
Lal A. Iron in Health and Disease: An Update. Indian J Pediatr, 2020, 87(1):58-65. doi:10.1007/s12098-019-03054-8.
pmid: 31520313 |
| [46] | Esposito G, Dottori L, Pivetta G, et al. Pernicious Anemia: The Hematological Presentation of a Multifaceted Disorder Caused by Cobalamin Deficiency. Nutrients, 2022, 14(8):1672. doi:10.3390/nu14081672. |
| [47] | Dai Y, Zhu C, Xiao W, et al. Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. J Clin Invest, 2023, 133(8):e159941. doi:10.1172/JCI159941. |
| [48] |
Tazearslan C, Huang J, Barzilai N, et al. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell, 2011, 10(3):551-554. doi:10.1111/j.1474-9726.2011.00690.x.
pmid: 21388493 |
| [49] | Carr AC, Maggini S. Vitamin C and Immune Function. Nutrients, 2017, 9(11):1211. doi:10.3390/nu9111211. |
| [50] |
Bhargava A, Benedetti A, Oxlade O, et al. Undernutrition and the incidence of tuberculosis in India: national and subnational estimates of the population-attributable fraction related to undernutrition. Natl Med J India, 2014, 27(3):128-133.
pmid: 25668081 |
| [51] | Zachariah R, Spielmann MP, Harries AD, et al. Moderate to severe malnutrition in patients with tuberculosis is a risk factor associated with early death. Trans R Soc Trop Med Hyg, 2002, 96(3):291-294. doi:10.1016/s0035-9203(02)90103-3. |
| [52] | 黄家辉, 叶旻泓, 周欣. 抗结核药物导致肝损害2015—2020年文献分析. 现代药物与临床, 2021, 36 (4): 823-827. doi:10.7501/j.issn.1674-5515.2021.04.039. |
| [53] | World Health Organization. Guidelines for nutritional care in tuberculosis. Geneva: World Health Organization, 2019. |
| [54] |
Sudarsanam TD, John J, Kang G, et al. Pilot randomized trial of nutritional supplementation in patients with tuberculosis and HIV-tuberculosis coinfection receiving directly observed short-course chemotherapy for tuberculosis. Trop Med Int Health, 2011, 16(6):699-706. doi:10.1111/j.1365-3156.2011.02761.x.
pmid: 21418447 |
| [55] |
Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D 3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet, 2011, 377(9761):242-250. doi:10.1016/S0140-6736(10)61889-2.
pmid: 21215445 |
| [56] | Ralph AP, Waramori G, Pontororing GJ, et al. L-arginine and vitamin D adjunctive therapies in pulmonary tuberculosis: a randomised, double-blind, placebo-controlled trial. PLoS One, 2013, 8(8):e70032. doi:10.1371/journal.pone.0070032. |
| [57] | Martineau AR, Timms PM, Bothamley GH, et al. High-dose vitamin D 3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet, 2015, 385(9976):856-865. doi:10.1016/S0140-6736(14)62038-9. |
| [58] | 王霖, 沈凌筠, 李海雯, 等. 云南省肺结核病患者营养状况及免疫功能分析. 昆明医科大学学报, 2023, 44(1): 109-115. doi:10.12259/j.issn.2095-610X.S20230116. |
| [59] |
Muzembo BA, Mbendi NC, Ngatu NR, et al. Serum selenium levels in tuberculosis patients: A systematic review and meta-analysis. J Trace Elem Med Biol, 2018, 50:257-262. doi:10.1016/j.jtemb.2018.07.008.
pmid: 30262288 |
| [60] | Zhao YJ, Zhao YH, Zhang XY, et al. First Report of Toxoplasma gondii Infection in Tuberculosis Patients in China. Vector Borne Zoonotic Dis, 2017, 17(12):799-803. doi:10.1089/vbz.2017.2151. |
| [61] |
Botella H, Stadthagen G, Lugo-Villarino G, et al. Metallo-biology of host-pathogen interactions: an intoxicating new insight. Trends Microbiol, 2012, 20(3):106-112. doi:10.1016/j.tim.2012.01.005.
pmid: 22305804 |
| [62] | Ferryansyah F, Isa M, Juhairina J, et al. The Effect of Suplementation Omega-3 on Sputum Conversion, Body Mass Index, Interleukin-6 and Monocyte Lymphocyte Ratio in the Treatment of Pulmonary Tuberculosis. Journal La Medihealtico, 2025, 6(3): 594-606. doi:10.37899/journallamedihealtico.v6i3.2041. |
| [63] |
Siramolpiwat S, Limthanetkul N, Pornthisarn B, et al. Branched-chain amino acids supplementation improves liver frailty index in frail compensated cirrhotic patients: a randomized controlled trial. BMC Gastroenterol, 2023, 23(1):154. doi:10.1186/s12876-023-02789-1.
pmid: 37189033 |
| [64] | Hayford FEA, Dolman RC, Ozturk M, et al. Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status. Front Nutr, 2021, 8:695452. doi:10.3389/fnut.2021.695452. |
| [65] | Shah V, Murugan Y, Patel SS, et al. Nutritional supplementation in tuberculosis treatment: a mixed-methods study in India. Cureus, 2024, 16(9):e70300. doi:10.7759/cureus.70300. |
| [66] | 丁芹, 张胜康, 任斐, 等. 耐药肺结核患者的营养状况调查及影响因素分析:一项多中心、大样本研究. 中国防痨杂志, 2023, 45(9): 826-832. doi:10.19982/j.issn.1000-6621.20230047. |
| [1] | 中国中医科学院中医临床基础医学研究所, 浙江中医药大学附属丽水中医院, 中国防痨协会, 《中国防痨杂志》编辑委员会. 结核分枝杆菌潜伏感染中医辨证分型及治法方药专家共识[J]. 中国防痨杂志, 2026, 48(1): 1-8. |
| [2] | 陈丽娜, 丁丽麒, 何燕, 陈丹萍. 肺结核患者的自律性现状及其影响因素分析[J]. 中国防痨杂志, 2026, 48(1): 113-120. |
| [3] | 余洲, 陈丽娜, 杨荣静, 尚旋, 肖国素, 张先明, 黄妮雯. 水蛭素通过调节Nrf2/HO-1信号通路改善小鼠结核性胸膜纤维化的研究[J]. 中国防痨杂志, 2026, 48(1): 131-138. |
| [4] | 范维肖, 周柯, 刘家云. 基于GEO数据库筛选活动性结核病胞葬作用相关关键基因的研究[J]. 中国防痨杂志, 2026, 48(1): 139-147. |
| [5] | 付娅楠, 杨小涛, 刘晓梅, 申阿东. 儿童药物敏感肺结核治疗方案的研究进展[J]. 中国防痨杂志, 2026, 48(1): 148-152. |
| [6] | 王晓华, 谢境, 吕天富, 王绍艳, 陆炳团. 宏基因组捕获测序辅助诊断肝硬化并发结核性腹膜炎一例[J]. 中国防痨杂志, 2026, 48(1): 160-163. |
| [7] | 孙晴, 王小平, 杨小梅, 韩瑞豪, 顾烨秋, 符剑. 2000—2021年中国24岁及以下人群结核病疾病负担现状及趋势分析[J]. 中国防痨杂志, 2026, 48(1): 21-33. |
| [8] | 朱庆东, 赵春艳, 黄爱春, 曾春梅, 龚春明, 许超艳, 简莎莎, 李维文, 宋畅. 1990—2021年中国60岁及以上老年人HIV/AIDS合并药物敏感结核病的疾病负担及变化趋势[J]. 中国防痨杂志, 2026, 48(1): 34-40. |
| [9] | 黄珊珊, 董小伟, 周芳静, 冯慧莹, 李建伟, 陈瑜晖. 广东省肺结核患者复发流行特征及其影响因素分析[J]. 中国防痨杂志, 2026, 48(1): 41-48. |
| [10] | 唐顺定, 许琳, 李玲, 寸得娇, 杨蕊. 云南省民族地区≥65岁老年人接受肺结核主动筛查的意愿及影响因素分析[J]. 中国防痨杂志, 2026, 48(1): 49-56. |
| [11] | 田晓梅, 蒋学峰, 杨霞, 沙小兰, 雷娟, 王晓炜, 刘静. 2015—2023年宁夏地区MTB/HIV双重感染者发现及治疗转归分析[J]. 中国防痨杂志, 2026, 48(1): 57-63. |
| [12] | 上官士超, 王珂, 王连森, 段曦, 黄鹏翔, 姚明晓, 娄蕾. 2005—2023年山东省肺结核流行趋势分析[J]. 中国防痨杂志, 2026, 48(1): 64-72. |
| [13] | 王娜, 万彬, 赵霞, 何婷, 张淼, 姚蓉, 杨小艺. 中国学生肺结核患者确诊延迟的Meta分析[J]. 中国防痨杂志, 2026, 48(1): 73-83. |
| [14] | 陈薇薇, 邹圣强, 袁嘉, 吴荣珍, 施玲燕. 中青年肺结核患者恐惧疾病进展的潜在剖面及影响因素分析[J]. 中国防痨杂志, 2026, 48(1): 84-93. |
| [15] | 江西省胸科医院/江西省卫生健康结核病重点实验室, 广州国家实验室, 中国防痨协会. 结核病宿主来源生物标志物的诊断应用专家共识[J]. 中国防痨杂志, 2026, 48(1): 9-20. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可
