| [1] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 结核与肺部疾病杂志, 2024, 5 (4): 376-378. doi:10.19983/j.issn.2096-8493.2024022.
|
| [2] |
Shaw JA, Koegelenberg CFN. Pleural Tuberculosis. Clin Chest Med, 2021, 42(4): 649-666. doi:10.1016/j.ccm.2021.08.002.
pmid: 34774172
|
| [3] |
de Pablo A, Villena V, Echave-Sustaeta J, et al. Are pleural fluid parameters related to the development of residual pleural thickening in tuberculosis?. Chest, 1997, 112(5): 1293-1297. doi:10.1378/chest.112.5.1293.
pmid: 9367471
|
| [4] |
Sekine A, Hagiwara E, Iwasawa T, et al. Asbestos exposure and tuberculous pleurisy as developmental causes of progressive unilateral upper-lung field pulmonary fibrosis radiologically consistent with pleuroparenchymal fibroelastosis. Respir Investig, 2021, 59(6): 837-844. doi:10.1016/j.resinv.2021.05.010.
pmid: 34172419
|
| [5] |
Lee CS, Li SH, Chang CH, et al. Diagnosis of tuberculosis pleurisy with three endoscopic features via pleuroscopy. Ther Adv Respir Dis, 2021, 15: 1753466621989532. doi:10.1177/1753466621989532.
|
| [6] |
Meyer ML, Potts-Kant EN, Ghio AJ, et al. NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia. Am J Physiol Lung Cell Mol Physiol, 2012, 303(3): L181-188. doi:10.1152/ajplung.00084.2012.
|
| [7] |
Makena P, Kikalova T, Prasad GL, et al. Oxidative Stress and Lung Fibrosis: Towards an Adverse Outcome Pathway. Int J Mol Sci, 2023, 24(15):12490. doi:10.3390/ijms241512490.
|
| [8] |
Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol, 2017, 11: 240-253. doi:10.1016/j.redox.2016.12.011.
pmid: 28012439
|
| [9] |
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. Oxid Med Cell Longev, 2021, 2021: 6635460. doi:10.1155/2021/6635460.
|
| [10] |
Dewanjee S, Bhattacharya H, Bhattacharyya C, et al. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal, 2024, 22(1): 497. doi:10.1186/s12964-024-01878-2.
pmid: 39407193
|
| [11] |
Cho HY, Reddy SP, Yamamoto M, et al. The transcription factor NRF 2 protects against pulmonary fibrosis. FASEB J, 2004, 18(11): 1258-1260. doi:10.1096/fj.03-1127fje.
|
| [12] |
丁大力, 沈学彬, 姚佳慧, 等. 中药治疗肺纤维化的研究进展. 中草药, 2021, 52(22): 7006-7024. doi:10.7501/j.issn.0253-2670.2021.22.028.
|
| [13] |
Sun Z, Wang F, Yang Y, et al. Resolvin D1 attenuates ventilator-induced lung injury by reducing HMGB1 release in a HO-1-dependent pathway. Int Immunopharmacol, 2019, 75: 105825. doi:10.1016/j.intimp.2019.105825.
|
| [14] |
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, et al. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci, 2023, 334: 122209. doi:10.1016/j.lfs.2023.122209.
|
| [15] |
王家兴, 任桐. 水蛭及其活性成分治疗脏器纤维化研究进展. 辽宁中医杂志, 2020, 47(5): 213-216. doi:10.13192/j.issn.1000-1719.2020.05.064.
|
| [16] |
国家中医药管理局重大疑难疾病(急性心肌梗死)中西医临床协作试点项目组, 通心络防治急性ST段抬高型心肌梗死心肌无再流专家共识编制组. 中药通心络防治急性ST段抬高型心肌梗死心肌无再流中国专家共识(2022年). 疑难病杂志, 2022, 21(7): 675-682. doi:10.3969/j.issn.1671-6450.2022.07.002.
|
| [17] |
Junren C, Xiaofang X, Huiqiong Z, et al. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives-A Review. Front Pharmacol, 2021, 12: 660757. doi:10.3389/fphar.2021.660757.
|
| [18] |
Lan F, Long C, Huang H, et al. Hirudin inhibits ferroptosis to improve renal fibrosis by targeting the STAT3/NLRP 3 signaling pathway. Acta Cir Bras, 2025, 40: e403325. doi:10.1590/acb403325.
|
| [19] |
He B, Zeng Q, Tian Y, et al. PGC1-Alpha/Sirt 3 Signaling Pathway Mediates the Anti-Pulmonary Fibrosis Effect of Hirudin by Inhibiting Fibroblast Senescence. Biomedicines, 2024, 12(7): 1436. doi:10.3390/biomedicines12071436.
|
| [20] |
Wei X, Zou Y, Dong S, et al. Recombinant hirudin attenuates pulmonary hypertension and thrombosis in acute pulmonary embolism rat model. PeerJ, 2024, 12: e17039. doi:10.7717/peerj.17039.
|
| [21] |
张梦迪, 王琦琦, 王鑫, 等. 2005—2020年中国60岁及以上老年人群肺结核疾病负担研究. 中国防痨杂志, 2025, 47(3): 338-347. doi:10.19982/j.issn.1000-6621.20240508.
|
| [22] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
| [23] |
Tanimura T, Jaramillo E, Weil D, et al. Financial burden for tuberculosis patients in low- and middle-income countries: a systematic review. Eur Respir J, 2014, 43(6): 1763-1775. doi:10.1183/09031936.00193413.
pmid: 24525439
|
| [24] |
冯碧莹, 李平, 杜玮. NDNF低表达对博来霉素致肺纤维化小鼠炎症反应、氧化应激和EMT的影响. 贵州医科大学学报, 2024, 49(5): 665-671. doi:10.19367/j.cnki.2096-8388.2024.05.006.
|
| [25] |
刘卫, 朱运奎, 马莉. 结核性胸膜炎患者单个核细胞DNA氧化损伤及褪黑素的体外修复作用. 中华内科杂志, 2007, 46(3): 213-216. doi:10.3760/j.issn:0578-1426.2007.03.011.
|
| [26] |
田黎明, 彭圆, 柯丹, 等. 养颜青蛾丸对D-半乳糖诱导的小鼠衰老皮肤氧化应激及MMP-1、MMP-3表达的影响. 辽宁中医杂志, 2020, 47(8): 186-190. doi:10.13192/j.issn.1000-1719.2020.08.054.
|
| [27] |
Wu L, Luo Z, Zheng J, et al. IL-33 Can Promote the Process of Pulmonary Fibrosis by Inducing the Imbalance Between MMP-9 and TIMP-1. Inflammation, 2018, 41(3): 878-885. doi:10.1007/s10753-018-0742-6.
pmid: 29417309
|
| [28] |
Müller C, Lukas P, Böhmert M, et al. Hirudin or hirudin-like factor-that is the question: insights from the analyses of natural and synthetic HLF variants. FEBS Lett, 2020, 594(5): 841-850. doi:10.1002/1873-3468.13683.
|
| [29] |
Du J, Kang Z, Huang L, et al. Protective effects of Hirudin against compartment syndrome in rabbits through the activation of Nrf2/HO-1. Injury, 2022, 53(2): 408-415. doi:10.1016/j.injury.2021.11.014.
|
| [30] |
陈光海, 刘晓平. Keap1-Nrf2信号通路与细胞氧化应激反应相关性研究进展. 医学理论与实践, 2016, 29(15): 2012-2015. doi:10.19381/j.issn.1001-7585.2016.15.011.
|
| [31] |
Zhang C, Kong X, Ma D. miR-141-3p inhibits vascular smooth muscle cell proliferation and migration via regulating Keap1/Nrf2/HO-1 pathway. IUBMB Life, 2020, 72(10): 2167-2179. doi:10.1002/iub.2374.
|