中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (8): 961-975.doi: 10.19982/j.issn.1000-6621.20250225
中国防痨协会非结核分枝杆菌病分会
收稿日期:
2025-05-27
出版日期:
2025-08-10
发布日期:
2025-08-01
通信作者:
孙勤,Email: sunqinbonjour@163.com
基金资助:
Nontuberculous Mycobacterial Diseases Branch of Chinese Antituberculosis Association
Received:
2025-05-27
Online:
2025-08-10
Published:
2025-08-01
Contact:
Sun Qin, Email: sunqinbonjour@163.com
Supported by:
摘要:
非结核分枝杆菌(nontuberculous mycobacteria,NTM)病呈现上升趋势。传统的抗酸染色涂片和分枝杆菌培养等方法存在敏感度低、耗时长、无法鉴定至具体菌种等问题,而分子生物学检测技术在NTM病的诊断和菌种鉴定方面展现了独特的优势和巨大的应用前景。目前,我国在NTM病分子诊断方面缺乏系统全面的指导性共识。为规范NTM病分子诊断技术的临床应用,提升广大医务工作者NTM病的诊治能力,中国防痨协会非结核分枝杆菌病专业分会组织我国NTM病专家、感染病学专家、微生物学专家和方法学专家组成编写组,经过系统的文献复习、多轮线上线下讨论和问卷调查,评估分子生物学检测技术的优缺点及应用现状,就NTM病分子生物学诊断的重要问题进行讨论,经过多次会议讨论和修订,最终形成本共识。本共识针对NTM病诊断的分子靶标、分子生物学诊断技术、检测结果解读等核心问题,最终形成11条推荐意见。本共识系统构建了NTM病分子生物学诊断的技术框架和临床应用路径,解决了技术碎片化、解读标准化不足等核心问题,为临床医生、检验科室及公共卫生部门提供了指导。
中图分类号:
中国防痨协会非结核分枝杆菌病分会. 非结核分枝杆菌病分子生物学诊断专家共识[J]. 中国防痨杂志, 2025, 47(8): 961-975. doi: 10.19982/j.issn.1000-6621.20250225
Nontuberculous Mycobacterial Diseases Branch of Chinese Antituberculosis Association. Expert consensus on molecular biology diagnosis of nontuberculous mycobacteria diseases[J]. Chinese Journal of Antituberculosis, 2025, 47(8): 961-975. doi: 10.19982/j.issn.1000-6621.20250225
表1
非结核分枝杆菌鉴定常用生物靶标
靶标 | 推荐鉴定菌种 | 缺陷 | 备注 |
---|---|---|---|
16S rRNA | 鉴定临床常见非结核分枝杆菌,如鸟分枝杆菌复合群、脓肿分枝杆菌复合群、偶发分枝杆菌复合群等,以及戈登分枝杆菌、蟾蜍分枝杆菌、玛尔摩分枝杆菌、瘰疬分枝杆菌、草分枝杆菌、耻垢分枝杆菌 | 不能区分堪萨斯和胃分枝杆菌、海分枝杆菌和溃疡分枝杆菌、龟分枝杆菌和脓肿分枝杆菌,对鸟分枝杆菌复合群、脓肿分枝杆菌复合群、偶发分枝杆菌复合群亚种的鉴定能力弱 | 现有数据库最完整 |
hsp65 | 常见非结核分枝杆菌的鉴定,如鸟分枝杆菌复合群和脓肿分枝杆菌复合群及亚种,堪萨斯分枝杆菌、胃分枝杆菌、海分枝杆菌、溃疡分枝杆菌、龟分枝杆菌、瘰疬分枝杆菌、耻垢分枝杆菌、草分枝杆菌等 | 对偶发分枝杆菌复合群亚种和猿分枝杆菌的鉴定能力弱 | 鉴别能力优于其他靶标 |
rpoB | 常见非结核分枝杆菌的鉴定,如脓肿分枝杆菌复合群及亚种,鸟分枝杆菌、胞内分枝杆菌、龟分枝杆菌、堪萨斯分枝杆菌、胃分枝杆菌、海分枝杆菌、溃疡分枝杆菌等 | 对土分枝杆菌的鉴定能力弱 | 同时检测利福平耐药性 |
ITS | 常见缓慢生长型分枝杆菌的鉴定,如鸟分枝杆菌复合群及亚种,胃分枝杆菌、堪萨斯分枝杆菌、瘰疬分枝杆菌、戈登分枝杆菌、玛尔摩分枝杆菌和苏尔佳分枝杆菌 | 对快速生长型分枝杆菌鉴定能力弱 | 通常作为16S rRNA的补充 |
表2
非结核分枝杆菌病常用分子生物学诊断技术的比较
技术名称 | 优势 | 缺陷 |
---|---|---|
实时荧光PCR | 可直接检测临床样本,应用广泛,敏感度和特异度较高 | 适用于初筛,部分技术不能进行非结核分枝杆菌的种属鉴定 |
荧光PCR熔解曲线 | 可直接检测临床样本,方便快捷,准确率高,经济成本低 | 仅能鉴定试剂盒内特定的临床常见菌种 |
一代测序 | 敏感度和特异度高,是目前非结核分枝杆菌菌种鉴定的“金标准” | 耗时,操作复杂伴一定的检测污染风险 |
高通量测序 | 高通量,靶向测序可检测到预设的耐药相关基因的突变类型;宏基因组测序可同时检测包括非结核分枝杆菌在内的多种病原微生物,对混合感染有优势;全基因组测序可获得全部基因信息,有助于发现新的非结核分枝杆菌菌种 | 经济成本高,对样本、设备和结果解读的要求高;全基因组测序不能直接检测临床样本,耗时长,不适合大规模应用 |
核酸飞行时间质谱 | 高通量,敏感度和特异度高,可以检测分枝杆菌的混合感染和耐药相关基因的突变类型 | 经济成本较高,操作较为复杂 |
线性探针 | 价格低廉,敏感度和特异度较高 | 需要专门仪器,操作繁琐 |
PCR反向斑点杂交 | 可直接检测临床样本,敏感度和特异度较高 | 自动化程度偏低 |
基因芯片 | 通量较高,简单快速,敏感度和特异度较高 | 需PCR后处理,容易造成污染 |
表3
非结核分枝杆菌病常见感染部位与菌种
器官与部位 | 常见感染菌种 |
---|---|
肺 | 鸟分枝杆菌复合群、脓肿分枝杆菌复合群、堪萨斯分枝杆菌、蟾蜍分枝杆菌等 |
皮肤/软组织 | 海分枝杆菌、脓肿分枝杆菌复合群、龟分枝杆菌、偶发分枝杆菌复合群和溃疡分枝杆菌等 |
淋巴结 | 鸟分枝杆菌复合群、嗜血分枝杆菌、瘰疬分枝杆菌、玛尔摩分枝杆菌等 |
播散性非结核分枝杆菌病 | 鸟分枝杆菌复合群、龟分枝杆菌、嗜血分枝杆菌和堪萨斯分枝杆菌等 |
角膜/脉络膜 | 偶发分枝杆菌复合群、龟分枝杆菌和脓肿分枝杆菌复合群等 |
骨关节 | 海分枝杆菌、鸟分枝杆菌复合群、脓肿分枝杆菌复合群、偶发分枝杆菌复合群和龟分枝杆菌等 |
骨髓 | 脓肿分枝杆菌复合群、偶发分枝杆菌复合群和龟分枝杆菌等 |
牙龈 | 偶发分枝杆菌复合群和龟分枝杆菌 |
人工心脏/瓣膜置换术后 | 奇美拉分枝杆菌、偶发分枝杆菌复合群、龟分枝杆菌和脓肿分枝杆菌复合群等 |
实体器官移植术后 | 鸟分枝杆菌复合群 |
[1] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[2] |
Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol, 2020, 18(7):392-407. doi:10.1038/s41579-020-0331-1.
pmid: 32086501 |
[3] | Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56(1):200053. doi:10.1183/13993003.00535-2020. |
[4] | Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017, 72(Suppl 2): ii1-ii64. doi:10.1136/thoraxjnl-2017-210927. |
[5] | Conyers LE, Saunders BM. Treatment for non-tuberculous mycobacteria: challenges and prospects. Front Microbiol, 2024, 15:1394220. doi:10.3389/fmicb.2024.1394220. |
[6] |
Tan Y, Deng Y, Yan X, et al. Nontuberculous mycobacterial pulmonary disease and associated risk factors in China: A prospective surveillance study. J Infect, 2021, 83(1):46-53. doi:10.1016/j.jinf.2021.05.019.
pmid: 34048821 |
[7] | 中华医学会结核病学分会,非结核分枝杆菌病实验室诊断专家共识编写组. 非结核分枝杆菌病实验室诊断专家共识. 中华结核和呼吸杂志, 2016, 39(6):438-443. doi:10.3760/cma.j.issn.1001-0939.2016.06.007. |
[8] | Huang WC, Yu MC, Huang YW. Identi cation and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc, 2020, 119 Suppl 1: S32-S41. doi:10.1016/j.jfma.2020.05.002. |
[9] | C1inical and Laboratory Standards Institute. Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; approved guideline, CLSI document MMl8-A. Wayne(PA): C1inical and Laboratory Standards Institute, 2008. |
[10] | Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev, 2003, 16(2):319-354. doi:10.1128/CMR.16.2.319-354.2003. |
[11] | Fedrizzi T, Meehan CJ, Grottola A, et al. Genomic characteri-zation of Nontuberculous Mycobacteria. Sci Rep, 2017, 7:45258. doi:10.1038/srep45258. |
[12] | Lamy B, Marchandin H, Hamitouche K, et al. Mycobacterium setense sp.nov., a Mycobacterium fortuitum-group organism isolated from a patient with soft tissue infection and osteitis. Int J Syst Evol Microbiol, 2008, 58(Pt 2):486-490. doi:10.1099/ijs.0.65222-0. |
[13] | 纪凌云, 李马超, 蒋毅, 等. 16S rRNA在常见致病分枝杆菌菌种鉴定中的应用. 检验医学与临床, 2022, 19(11):1467-1471. doi:10.3969/j.issn.1672-9455.2022.11.007. |
[14] | Kim HY, Kook Y, Yun YJ, et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group isolates. J Clin Microbiol, 2008, 46(10):3384-3390. doi:10.1128/JCM.00319-08. |
[15] | Kim BI, Hong SH, Kook YH, et al. Mycobacterium paragordonae sp.nov., a slowly growing, scotochromogenic species closely related to Mycobacterium gordonae. Int J Syst Evol Microbiol, 2014, 64(Pt 1):39-45. doi:10.1099/ijs.0.051540-0. |
[16] | Shahraki AH, Trovato A, Mirsaeidi M, et al. Mycobacterium persicum sp.nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri. Int J Syst Evol Microbiol, 2017, 67(6):1766-1770. doi:10.1099/ijsem.0.001862. |
[17] | Kim SH, Shin JH. Identification of nontuberculous mycobacteria using multilocous sequence analysis of 16S rRNA, hsp65, and rpoB. J Clin Lab Anal, 2018, 32(1): e22184. doi:10.1002/jcla.22184. |
[18] | 孙谦, 张嵘, 张艳, 等. 不同分子生物学方法快速鉴别非结核分枝杆菌的应用评价. 中华检验医学杂志, 2011, 34(8):700-704. doi:10.3760/cma.j.issn.1009-9158.2011.08.007. |
[19] | Jang MA, Koh WJ, Huh HJ, et al. Distribution of nontuberculous mycobacteria by multigene sequence-based typing and clinical significance of iso1ated strains. J C1in Microbiol, 2014, 52(4):1207-1212. doi:10.1128/JCM.03053-13. |
[20] |
Kadasu R, Teja VD, Angaali N, et al. Novel and rare species of nontuberculous mycobacteria by Hsp-65 gene sequencing. Int J Mycobacteriol, 2022, 11(4):423-428. doi:10.4103/ijmy.ijmy_175_22.
pmid: 36510929 |
[21] | Dai J, Chen Y, Lauzardo M. Web-accessible database of hsp65 sequences from Mycobacterium reference strains. J Clin Microbiol, 2011, 49(6):2296-2303. doi:10.1128/JCM.02602-10. |
[22] |
Pascapurnama DN, Zavitri NG, Koesoemadinata RC, et al. Identification of Significant Pathogenic Nontuberculous Mycobacteria Species from Presumptive TB Patients Using Partial hsp65 Gene Sequencing. Infect Drug Resist, 2023, 16:6923-6930. doi:10.2147/IDR.S419956.
pmid: 37928609 |
[23] |
Khosravi AD, Hashemzadeh M, Rokhfirooz P. Molecular identifcation of nontuberculous mycobacteria using the rpoB, argH and cya genes analysis. AMB Express, 2022, 12(1):121. doi:10.1186/s13568-022-01463-1.
pmid: 36121509 |
[24] | Adékambi T, Colson P, Drancourt M. rpoB-based identi cation of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol, 2003, 41(12):5699-5708. doi:10.1128/JCM.41.12.5699-5708.2003. |
[25] |
de Zwaan R, van Ingen J, van Soolingen D. Utility of rpoB gene sequencing for identification of nontuberculous mycobacteria in the Netherlands. J Clin Microbiol, 2014, 52(7):2544-2551. doi:10.1128/JCM.00233-14.
pmid: 24808238 |
[26] | Adékambi T, Berger P, Raoult D, et al. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp.nov., Mycobacterium phocaicum sp.nov. and Mycobacterium aubagnense sp.nov. Int J Syst Evol Microbiol, 2006, 56(Pt 1):133-143. doi:10.1099/ijs.0.63969-0. |
[27] | Kim MJ, Kim KM, Shin JI, et al. Identification of Nontuberculous Mycobacteria in Patients with Pulmonary Diseases in Gyeongnam, Korea, Using Multiplex PCR and Multigene Sequence-Based Analysis. Can J Infect Dis Med Microbiol, 2021, 2021:8844306. doi:10.1155/2021/8844306. |
[28] | Pourahmad F, Adams A, Thompson KD, et al. Identification of aquatic mycobacteria based on sequence analysis of the 16-23 S rRNA internal transcribed spacer region. J Med Microbio1, 2019, 68(2): 221-229. doi:10.1099/jmm.0.000891. |
[29] |
Davari M, Irandoost M, Sakhaee F, et al. Genetic Diversity and Prevalence of Nontuberculous Mycobacteria Isolated from Clinical Samples in Tehran, Iran. Microb Drug Resist, 2019, 25(2):264-270. doi:10.1089/mdr.2018.0150.
pmid: 30256172 |
[30] | Subedi S, Kong F, Jelfs P, et al. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria. PLoS One, 2016, 11(10):e0164138. doi:10.1371/journal.pone.0164138. |
[31] | Gray TJ, Kong F, Jelfs P, et al. Improved identification of rapidly growing mycobacteria by a 16S-23S internal transcribed spacer region PCR and capillary gel electrophoresis. PLoS One, 2014, 9(7):e102290. doi:10.1371/journal.pone.0102290. |
[32] | Xiong L, Kong F, Yang Y, et al. Use of PCR and reverse line blot hybridization macroarray based on 16S-23S rRNA gene internal transcribed spacer sequences for rapid identification of 34 mycobacterium species. J Clin Microbiol, 2006, 44(10):3544-3550. doi:10.1128/JCM.00633-06. |
[33] | Truden S, Žolnir-DovcˇM, Sodja E, et al. Nationwide analysis of Mycobacterium chimaera and Mycobacterium intracellulare isolates: Frequency, clinical importance, and molecular and phenotypic resistance profiles. Infect Genet Evol, 2020, 82:104311. doi:10.1016/j.meegid.2020.104311. |
[34] | 中华预防医学会医院感染控制分会. 临床微生物标本采集和送检指南. 中华医院感染学杂志, 2018, 28(20):3192-3200. doi:10.11816/cn.ni.2018-183362. |
[35] | 中国中西医结合学会检验医学专业委员会. 临床检验样本转运及保存规范化专家共识. 中华检验医学杂志, 2023, 46(3):259-264. doi:10.3760/cma.j.cn114452-20221208-00725. |
[36] | 康丽军, 洪峰, 冯建兵, 等. 结核/非结核分枝杆菌核酸快速检测方法临床应用价值. 中国防痨杂志, 2011, 33(5):263-266. |
[37] | Lim JH, Kim CK, Bae MH. Evaluation of the performance of two real-time PCR assays for detecting Mycobacterium species. J Clin Lab Anal, 2019, 33(1):e22645. doi:10.1002/jcla.22645. |
[38] | Choi YJ, Kim HJ, Shin HB, et al. Evaluation of peptide nucleic acid probe-based realtime PCR for detection of Mycobacterium tuberculosis complex and nontuberculous mycobacteria in respiratory specimens. Ann Lab Med, 2012, 32(4):257-263. doi:10.3343/alm.2012.32.4.257. |
[39] | Kim JU, Ryu DS, Cha CH, et al. Paradigm for diagnosing mycobacterial disease: direct detection and differentiation of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in clinical specimens using multiplex real-time PCR. J Clin Pathol, 2018, 71(9): 774-780. doi:10.1136/jclinpath-2017-204945. |
[40] | Jung YJ, Kim JY, Song DJ, et al. Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media. Diagn Microbiol Infect Dis, 2016, 85(2):186-191. doi:10.1016/j.diagmicrobio.2016.03.014. |
[41] | Sawatpanich A, Petsong S, Tumwasorn S, et al. Diagnostic performance of the Anyplex MTB/NTM real-time PCR in detection of Mycobacterium tuberculosis complex and nontuberculous mycobacteria from pulmonary and extrapulmonary specimens. Heliyon, 2022, 8(12):e11935. doi:10.1016/j.heliyon.2022.e11935. |
[42] | Sarro YDS, Butzler MA, Sanogo F, et al. Development and clinical evaluation of a new multiplex PCR assay for a simultaneous diagnosis of tuberculous and nontuberculous mycobacteria. EBioMedicine, 2021,70:103527. doi:10.1016/j.ebiom.2021.103527. |
[43] | Xu Y, Liang B, Du C, et al. Rapid Identification of Clinically Relevant Mycobacterium Species by Multicolor Melting Curve Analysis. J Clin Microbiol, 2019, 57(1):e01096-18. doi:10.1128/JCM.01096-18. |
[44] | 李爱芳, 谈小文, 崔晓利, 等. 荧光PCR熔解曲线法在非结核分枝杆菌菌种鉴定中的应用价值. 中国防痨杂志, 2021, 43(7):664-669. doi:10.3969/j.issn.1000-6621.2021.07.005. |
[45] | 胡顺奇, 徐宝卿, 延永琴, 等. 熔解曲线法对石蜡标本中非结核分枝杆菌的检测. 诊断病理学杂志, 2022, 29(12):1183-1184. doi:10.3969/j.issn.1007-8096.2022.12.026. |
[46] | 胡晓红, 韩宇, 庄倩, 等. 荧光PCR熔解曲线法分析宜昌地区非结核分枝杆菌感染的流行特征. 中国感染控制杂志, 2023, 22(8):939-944. doi:10.12138/j.issn.1671-9638.20234121. |
[47] | 黄文滨, 陈丽萍, 张望, 等. 交叉引物恒温扩增技术快速检测结核分枝杆菌复合群和非结核分枝杆菌系统的建立. 中国防痨杂志, 2023, 45(8):734-743. doi:10.19982/j.issn.1000-6621.20230088. |
[48] | Kim J, Park BG, Lim DH, et al. Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS One, 2021, 16(1):e0244753. doi:10.1371/journal.pone.0244753. |
[49] | 谢凤欣, 靳伟东, 田晖艳, 等. 数字PCR技术在精准分子诊断中的应用:机遇与挑战. 中华检验医学杂志, 2022, 45(3):214-219. doi:10.3760/cma.j.cn114452-20210903-00559. |
[50] |
Nishii Y, Furuhashi K, Nakamura S, et al. The Potential of Digital Polymerase Chain Reaction for Improving Diagnostic Yield of Nontuberculous Mycobacteria Pulmonary Disease. Infect Drug Resist, 2021, 14:5079-5087. doi:10.2147/IDR.S338165.
pmid: 34880633 |
[51] | 陈振华, 胡培磊, 易松林, 等. 湖南省某专科医院非结核分枝杆菌临床分离株菌种鉴定及药敏结果. 中国感染控制杂志, 2021, 20(4):361-365. doi:10.12138/j.issn.1671-9638.20216570. |
[52] | Colman RE, Anderson J, Lemmer D, et al. Rapid drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates directly from clinical samples by use of amplicon sequencing: a proof-of-concept study. J Clin Microbiol, 2016, 54:2058-2067. doi:10.1128/JCM.00535-16. |
[53] | Park J, Shin SY, Kim K, et al. Determining genotypic drug resistance by Ion semiconductor sequencing with the Ion AmpliSeqTM TB panel in multidrug-resistant Mycobacterium tuberculosis isolates. Ann Lab Med, 2018, 38(4):316-323. doi:10.3343/alm.2018.38.4.316. |
[54] | 陈华, 陈品儒, 李艳阳, 等. 靶向高通量测序鉴定非结核分枝杆菌菌种的应用价值. 中国防痨杂志, 2023, 45(4):362-366. doi:10.19982/j.issn.1000-6621.20220530. |
[55] | Li B, Xu L, Guo Q, et al. GenSeizer: a Multiplex PCR-Based Targeted Gene Sequencing Platform for Rapid and Accurate Identification of Major Mycobacterium Species. J Clin Microbiol, 2021, 59(2):e00584-20. doi:10.1128/JCM.00584-20. |
[56] | Yang C, Wang T, Guo Y, et al. Nanopore-targeted sequencing (NTS) for intracranial tuberculosis: a promising and reliable approach. Ann Clin Microbiol Antimicrob, 2024, 23(1):89. doi:10.1186/s12941-024-00751-x. |
[57] | Tang C, Wu L, Li M, et al. High-throughput nanopore targeted sequencing for efficient drug resistance assay of Mycobacterium tuberculosis. Front Microbiol, 2024, 15:1331656. doi:10.3389/fmicb.2024.1331656. |
[58] | Opperman C, Steyn J, Matthews MC, et al. Targeted deep sequencing of mycobacteria species from extrapulmonary sites not identified by routine line probe assays: A retrospective laboratory analysis of stored clinical cultures. IJID Reg, 2024, 13:100464. doi:10.1016/j.ijregi.2024.100464. |
[59] | 中华医学会检验医学分会. 高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识. 中华检验医学杂志, 2020, 43(12)1181-1195. doi:10.3760/cma.j.cn114452-20200903-00704. |
[60] | 高通量测序共识专家组. 高通量测序技术在分枝杆菌病诊断中的应用专家共识. 中华传染病杂志, 2023, 41(3):175-182. doi:10.3760/cma.j.cn311365-20221203-00492. |
[61] | Miao Q, Liang T, Pei N, et al. Evaluation of respiratory samples in etiology diagnosis and microbiome characterization by metagenomic sequencing. Respir Res, 2022, 23(1): 345. doi:10.1186/s12931-022-02230-3. |
[62] | Xu P, Yang K, Yang L, et al. Next-Generation Metagenome Sequencing Shows Superior Diagnostic Performance in Acid-Fast Staining Sputum Smear-Negative Pulmonary Tuberculosis and Non-tuberculous Mycobacterial Pulmonary Disease. Front Microbiol, 2022, 13:898195. doi:10.3389/fmicb.2022.898195. |
[63] | Liu Y, Ma X, Chen J, et al. Nontuberculous mycobacteria by metagenomic next-generation sequencing: Three cases reports and literature review. Front Public Health, 2022, 10:972280. doi:10.3389/fpubh.2022.972280. |
[64] |
Zhang X, Chen H, Lin Y, et al. Diagnosis of Non-Tuberculous Mycobacterial Pulmonary Disease by Metagenomic Next-Generation Sequencing on Bronchoalveolar Lavage Fluid. Infect Drug Resist, 2023, 16:4137-4145. doi:10.2147/IDR.S417088.
pmid: 37396070 |
[65] | Wei W, Cao J, Wu XC, et al. Diagnostic performance of metagenomic next-generation sequencing in non-tuberculous mycobacterial pulmonary disease when applied to clinical practice. Infection, 2023, 51(2):397-405. doi:10.1007/s15010-022-01890-z. |
[66] | 孔娇, 陈园园, 蔡青山, 等. 宏基因二代测序技术对非结核分枝杆菌肺病的诊断价值. 中国防痨杂志, 2022, 44(11):1135-1140. doi:10.19982/j.issn.1000-6621.20220298. |
[67] | Wang S, Xing L. Metagenomic next-generation sequencing assistance in identifying non-tuberculous mycobacterial infections. Front Cell Infect Microbiol, 2023, 13:1253020. doi:10.3389/fcimb.2023.1253020. |
[68] | 中华医学会呼吸病学分会. 下呼吸道感染宏基因组二代测序报告临床解读路径专家共识. 中华结核和呼吸杂志, 2023, 46(4):322-335. doi:10.3760/cma.j.cn112147-20220701-00553. |
[69] | 范帅华, 杜鹏程, 郭军. 纳米孔测序技术在呼吸系统感染病原学诊断中的应用价值与展望. 中华医学杂志, 2021, 101(25):2013-2015. doi:10.3760/cma.j.cn112137-20201027-02942. |
[70] | Liu Z, Yang Y, Wang Q, et al. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fuid in pulmonary tuberculosis. BMC Pulm Med, 2023, 23(1):77. doi:10.1186/s12890-023-02337-3. |
[71] | Lin WH, Tang F, Liu SS. Diagnostic value of nanopore sequencing technology in nontuberculous mycobacterial pulmonary disease. Am J Transl Res, 2024, 16(8):4208-4215. doi:10.62347/HHRH8076. |
[72] | Dohál M, Porvazník I, Pršo K, et al. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb), 2020,123:101946. doi:10.1016/j.tube.2020.101946. |
[73] |
Turenne CY. Nontuberculous mycobacteria: Insights on taxonomy and evolution. Infect Genet Evol, 2019, 72: 159-168. doi:10.1016/j.meegid.2019.01.017.
pmid: 30654178 |
[74] | Walker TM, Ip CL, Harrell RH, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis, 2013, 13(2):137-146. doi:10.1016/S1473-3099(12)70277-3. |
[75] | Yoon JK, Kim TS, Kim JI, et al. Whole genome sequencing of Nontuberculous Mycobacterium (NTM) isolates from sputum specimens of co-habiting patients with NTM pulmonary disease and NTM isolates from their environment. BMC Genom, 2020, 21(1): 322. doi:10.1186/s12864-020-6738-2. |
[76] | Hirabayashi R, Nakagawa A, Takegawa H, et al. A case of pleural effusion caused by Mycobacterium fortuitum and Mycobacterium mageritense coinfection. BMC Infect Dis, 2019, 19(1): 720. doi:10.1186/s12879-019-4366-8. |
[77] | Olaru ID, Patel H, Kranzer K, et al. Turnaround time of whole genome sequencing for mycobacterial identification and drug susceptibility testing in routine practice. Clin MicrobioI Infect, 2018, 24(6):659.e5-659.e7. doi:10.1016/j.cmi.2017.10.001. |
[78] | 中国核酸质谱应用专家共识协作组. 中国核酸质谱应用专家共识. 中华医学杂志, 2018, 98(12):895-900. doi:10.3760/cma.j.issn.0376-2491.2018.12.004. |
[79] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会. 核酸基质辅助激光解吸电离飞行时间质谱技术在结核病和非结核分枝杆菌病诊断中的临床应用专家共识. 中国防痨杂志, 2023, 45(6):543-558. doi:10.19982/j.issn.1000-6621.20230113. |
[80] | Li B, Zhu C, Sun L, et al. Performance evaluation and clinical validation of optimized nucleotide MALDI-TOF-MS for mycobacterial identification. Front Cell Infect Microbiol, 2022, 12:1079184. doi:10.3389/fcimb.2022.1079184. |
[81] | Yao L, Gui X, Wu X, et al. Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms, 2023, 11(8):1975. doi:10.3390/microorganisms11081975. |
[82] | 高绪胜, 丁彩红, 王庆, 等. 核酸基质辅助激光解吸电离飞行时间质谱技术在痰涂片阴性非结核分枝杆菌肺病中的诊断价值. 中华临床感染病杂志, 2024, 17(1):58-63. doi:10.3760/cma.j.issn.1674-2397.2024.01.006. |
[83] | 朱玉梅, 钟育权, 李金莉, 等. 线性探针法用于分枝杆菌菌种快速鉴定的应用研究. 新发传染病电子杂志, 2022, 7(2):47-51. doi:10.19871/j.cnki.xfcrbzz.2022.02.010. |
[84] |
Yang M, Huh HJ, Kwon HJ, et al. Comparative evaluation of the AdvanSure Mycobacteria GenoBlot assay and the GenoType Mycobacterium CM/AS assay for the identification of non-tuberculous mycobacteria. J Med Microbiol, 2016, 65(12):1422-1428. doi:10.1099/jmm.0.000376.
pmid: 27902391 |
[85] |
Huh HJ, Kim SY, Jhun BW, et al. Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019, 72:169-182. doi:10.1016/j.meegid.2018.10.003.
pmid: 30315892 |
[86] | Ahmad S, Mokaddas E. Diversity of Nontuberculous Mycobacteria In Kuwait: Rapid Identification And Differentiation Of Mycobacterium species by multiplex PCR, INNO-LiPA Mycobacteria v2 assay and PCR-sequencing of rDNA. Med Princ Pract, 2019, 28(3):208-215. doi:10.1159/000498910. |
[87] | Daley P, Petrich A, May K, et al. Comparison of in-house and commercial 16S rRNA sequencing with high-performance liquid chromatography and genotype AS and CM for identification of nontuberculous mycobacteria. Diagn Microbiol Infect Dis, 2008, 61(3):284-293. doi:10.1016/j.diagmicrobio.2008.02.018. |
[88] |
Gitti Z, Neonakis I, Fanti G, et al. Use of the GenoType Mycobacterium CM and AS assays to analyze 76 nontuberculous mycobacterial isolates from Greece. J Clin Microbiol, 2006, 44(6):2244-2246. doi:10.1128/JCM.02088-05.
pmid: 16757630 |
[89] | Quezel-Guerraz NM, Arriaza MM, Avila JA, et al. Evaluation of the Speed-oligo Mycobacteria assay for identification of Mycobacterium spp. from fresh liquid and solid cultures of human clinical samples. Diagn Microbiol Infect Dis, 2010, 68(2):123-131. doi:10.1016/j.diagmicrobio.2010.06.006. |
[90] |
Ramis IB, Cnockaert M, Von Groll A, et al. Evaluation of the Speed-Oligo Mycobacteria assay for the identification of nontuberculous mycobacteria. J Med Microbiol, 2015, 64(Pt 3):283-287. doi:10.1099/jmm.0.000025.
pmid: 25596120 |
[91] |
Umrao J, Singh D, Zia A, et al. Prevalence and species spectrum of both pulmonary and extrapulmonary nontuberculous mycobacteria isolates at a tertiary care center. Int J Mycobacteriol, 2016, 5(3):288-293. doi:10.1016/j.ijmyco.2016.06.008.
pmid: 27847012 |
[92] |
Kehrmann J, Kurt N, Rueger K, et al. GenoType NTM-DR for identifying Mycobacterium abscessus subspecies and determining molecular resistance. J Clin Microbiol, 2016, 54(6): 1653-1655. doi:10.1128/JCM.00147-16.
pmid: 27030487 |
[93] | Mok S, Rogers TR, Fitzgibbon M. Evaluation of GenoType NTM-DR Assay for Identification of Mycobacterium chimaera. J Clin Microbiol, 2017, 55(6):1821-1826. doi:10.1128/JCM.00009-17. |
[94] | Mougari F, Amarsy R, Veziris N, et al. Standardized interpretation of antibiotic susceptibility testing and resistance geno-typing for Mycobacterium abscessus with regard to subspecies and erm 41 sequevar. J Antimicrob Chemother, 2016, 71(8):2208-2212. doi:10.1093/jac/dkw130. |
[95] | 程丽平, 张晓岩, 沙巍. 痰标本PCR-反向斑点杂交法对疑似非结核分枝杆菌肺病的诊断价值. 中国防杂志, 2018, 40(8):834-839. doi:10.3969/j.issn.1000-6621.2018.08.011. |
[96] | 牛海军, 李远春, 赵雁林, 等. 河南省南阳市276例非结核分枝杆菌肺病的临床特征及其耐药性分析. 疾病监测, 2021, 36(7):708-713. doi:10.3784/jbjc.202101290055. |
[97] | Zhang R, Luo S, Wang N, et al. Epidemiology of Nontuberculous Mycobacteria in Nanjing and MAB_0540 Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Infect Drug Resist, 2023, 16:2751-2764. doi:10.2147/IDR.S408986. |
[98] |
Fang H, Shangguan Y, Wang H, et al. Multicenter evaluation of the biochip assay for rapid detection of mycobacterial isolates in smear-positive specimens. Int J Infect Dis, 2019, 81:46-51. doi:10.1016/j.ijid.2019.01.036.
pmid: 30685589 |
[99] | 刘佳文, 吕红艳, 丁北川, 等. 129株非结核分枝杆菌采用两种分子检测技术行菌种鉴定的结果分析. 中国防痨杂志, 2019, 4l(9):999-1004. doi:10.3969/j.issn.1000-6621.2019.09.015. |
[100] |
Zimenkov DV, Kulagina EV, Antonova OV, et al. Evaluation of a low-density hydrogel mieroarray technique for mycobacterial species identification. J Clin Microbiol, 2015, 53(4):1103-1114. doi:10.1128/JCM.02579-14.
pmid: 25609722 |
[101] |
Richardson ET, Samson D, Banaei N. Rapid Identification of Mycobacterium tuberculosis and nontuberculous mycobacteria by multiplex, real-time PCR. J Clin Microbiol, 2009, 47(5):1497-1502. doi:10.1128/JCM.01868-08.
pmid: 19297596 |
[102] | Hongmanee P, Stender H, Rasmussen OF. Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein-Jensen and Mycobacteria Growth Indicator Tube cultures using peptide nucleic acid probes. J Clin Microbiol, 2001, 39(3): 1032-1035. doi:10.1128/JCM.39.3.1032-1035.2001. |
[103] | Baliga S, Murphy C, Sharon L, et al. Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluore-scence in situ hybridization with DNA probes. Int J Infect Dis, 2018, 75:1-7. doi:10.1016/j.ijid.2018.07.011. |
[104] |
Millar BC, Moore JE. Hospital ice, ice machines, and water as sources of nontuberculous mycobacteria: Description of qualitative risk assessment models to determine host-Nontuberculous mycobacteria interplay. Int J Mycobacteriol, 2020, 9(4):347-362. doi:10.4103/ijmy.ijmy_179_20.
pmid: 33323649 |
[105] | Bisognin F, Messina F, Butera O, et al. Investigating the Origin of Mycobacterium chimaera Contamination in Heater-Cooler Units: Integrated Analysis with Fourier Transform Infrared Spectroscopy and Whole-Genome Sequencing. Microbiol Spectr, 2022, 10(6):e0289322. doi:10.1128/spectrum.02893-22. |
[106] | Wang C, Yan D, Huang J, et al. The clinical application of metagenomic next-generation sequencing in infectious diseases at a tertiary hospital in China. Front Cell Infect Microbiol, 2022, 12:957073. doi:10.3389/fcimb.2022.957073. |
[107] | Eyer-Silva WA, Almeida MR, Martins CJ, et al. Antiretroviral therapy-induced paradoxical worsening of previously healed Mycobacterium haemophilum cutaneous lesions in advanced HIV infection. Rev Inst Med Trop Sao Paulo, 2019,61: e71. doi:10.1590/S1678-9946201961071. |
[108] |
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis, 2016, 45:123-134. doi:10.1016/j.ijid.2016.03.006.
pmid: 26976549 |
[109] |
Duan H, Han X, Wang Q, et al. Clinical Significance of Nontuberculous Mycobacteria Isolated From Respiratory Specimens in a Chinese Tuberculosis Tertiary Care Center. Sci Rep, 2016, 6:36299. doi:10.1038/srep36299.
pmid: 27808247 |
[110] | Sharma SK, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res, 2020, 152(3):185-226. doi:10.4103/ijmr.IJMR_902_20. |
[111] | Malhotra AM, Arias M, Backx M, et al. Extrapulmonary nontuberculous mycobacterial infections: a guide for the general physician. Clin Med (Lond), 2024, 24(1):100016. doi:10.1016/j.clinme.2024.100016. |
[112] | 韩喜琴, 王敬, 谭秋清, 等. 93例非结核分枝杆菌肺病临床分析. 中国防痨杂志, 2023, 45(4):355-361. doi:10.19982/j.issn.1000-6621.20220519. |
[113] | 陈华, 胡锦兴, 陈品儒, 等. 广州市非结核分枝杆菌流行状况与菌种分布特征:基于2018—2019年数据. 分子影像学杂志, 2021, 44(2):378-382. doi:10.12122/j.issn.1674-4500.2021.02.32. |
[114] | 林建, 赵永, 戴志松, 等. 福建省261株非结核分枝杆菌的菌种鉴定分析. 中国防痨杂志, 2021, 43(6):590-595. doi:10.3969/j.issn.1000-6621.2021.06.012. |
[115] | 中国“一带一路”皮肤病专病联盟分枝杆菌病研究联盟,中国麻风防治协会皮肤性病检验与诊断分会. 中国皮肤非结核分枝杆菌病诊治专家共识(2024版). 中华皮肤科杂志, 2024, 57(2):109-118. doi:10.35541/cjd.20230371. |
[116] | Kim JH, Jung IY, Song JE, et al. Profiles of Extrapulmonary Nontuberculous Mycobacteria Infections and Predictors for Species: A Multicenter Retrospective Study. Pathogens, 2020, 9(11):949. doi:10.3390/pathogens9110949. |
[117] | 丁秀荣, 刘家琛, 陈铭, 等. 艾滋病合并播散性非结核分枝杆菌病患者71例的临床和实验室检查特征. 中华传染病杂志, 2022, 40(10):597-601. doi:10.3760/cma.j.cn311365-20211210-00435. |
[118] | 韦立莉, 曹存巍, 林有坤, 等. Sweet综合征伴抗γ干扰素自身抗体阳性的播散性非结核分枝杆菌病1例. 中华皮肤科杂志, 2024, 57(8):750-752. doi:10.35541/cjd.20210791. |
[119] | Lecorche E, Haenn S, Mougari F, et al. Comparison of methods available for identification of Mycobacterium chimaera. Clin Microbiol Infect, 2018, 24(4):409-413. doi:10.1016/j.cmi.2017.07.031. |
[120] | van Ingen J, Kohl TA, Kranzer K, et al. Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis, 2017, 17(10): 1033-1041. doi:10.1016/S1473-3099(17)30324-9. |
[121] | Ihara H, Kondo K, Muto Y, et al. The epidemiology of pulmonary Mycobacterium abscessus species in Japanese population. J Infect Chemother, 2024, 30(8):757-767. doi:10.1016/j.jiac.2024.02.018. |
[122] | 师凌昊, 程菲, 郭英华, 等. 非结核分枝杆菌肺病191例临床特征. 中华医院感染学杂志, 2023, 33(24):3742-3747. doi:10.11816/cn.ni.2023-231054. |
[123] | 陈晓红, 廖小琴, 吴迪, 等. 福州地区非结核分枝杆菌肺病临床特征. 中国感染控制杂志, 2021, 20(8):688-693. doi:10.12138/j.issn.1671-9638.20218191. |
[124] | 梁锋, 刘德情, 陈华, 等. 广州市非结核分枝杆菌病流行病学特征分析. 中国防痨杂志, 2024, 46(11):1373-1379. doi:10.19982/j.issn.1000-6621.20240185. |
[125] | 聂琦, 周勇, 陈华, 等. 非结核分枝杆菌病流行病学研究进展. 中华临床感染病杂志, 2020, 13(5):394-400. doi:10.3760/cma.j.issn.1674-2397.2020.05.014. |
[126] | Tan Y, Su B, Shu W, et al. Epidemiology of pulmonary disease due to nontuberculous mycobacteria in Southern China, 2013—2016. BMC Pulm Med, 2018, 18(1): 168. doi:10.1186/s12890-018-0728-z. |
[127] | Park SG, Kim H, Paik JH, et al. Cluster of Lymphadenitis due to Nontuberculous Mycobacterium in Children and Adolescents 8-15 Years of Age. J Korean Med Sci, 2019, 34(46):e302. doi:10.3346/jkms.2019.34.e302. |
[128] | 张洁, 苏建荣, 丁北川, 等. 北京地区非结核分枝杆菌菌种分布及耐药性研究. 中华结核和呼吸杂志, 2017, 40(3):210-214. doi:10.3760/cma.j.issn.1001-0939.2017.03.013. |
[129] | 陈华, 陈品儒, 谭守勇. 支气管扩张并非结核分枝杆菌感染临床流行病学分析. 中国医刊, 2016, 51(3): 43-46. doi:10.3969/j.issn.1008-1070.2016.03.014. |
[130] | Spaulding AB, Lai YL, Zelazny AM, et al. Geographic distribution of nontuberculous mycobacterial species identified among clinical isolates in the United States, 2009—2013. Ann Am Thorac Soc, 2017, 14(11):1655-1661. doi:10.1513/AnnalsATS.201611-860OC. |
[131] | Dakic'I, Arandjelovic'I, Savic'B, et al. Pulmonary isolation and clinical relevance of nontuberculous mycobacteria during nationwide survey in Serbia, 2010—2015. PLoS One, 2018, 13(11):e0207751. doi:10.1371/journal.pone.0207751. |
[132] | Pavlik I, Ulmann V, Falkinham JO 3rd. Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health. Microorganisms, 2022, 10(8):1516. doi:10.3390/microorganisms10081516. |
[133] | Wetzstein N, Dahl VN, Lillebaek T, et al. Clinical spectrum and relevance of Mycobacterium malmoense: Systematic review and meta-analysis of 859 patients. J Infect, 2024, 89(2):106203. doi:10.1016/j.jinf.2024.106203. |
[134] | van Halsema CL, Chihota VN, Gey van Pittius NC, et al. Clinical Relevance of Nontuberculous Mycobacteria Isolated from Sputum in a Gold Mining Workforce in South Africa: An Observational, Clinical Study. Biomed Res Int, 2015, 2015:959107. doi:10.1155/2015/959107. |
[135] | Narimisa N, Goodarzi F, Bostanghadiri N, et al. Prevalence of antibiotic resistance in clinical isolates of Mycobacterium kansasii: a systematic review and meta-analysis. Expert Rev Anti Infect Ther, 2024, 22(8):669-679. doi:10.1080/14787210.2024.2313051. |
[136] |
Falkinham JO 3rd. Current Epidemiologic Trends of the Nontuberculous Mycobacteria (NTM). Curr Environ Health Rep, 2016, 3(2):161-167. doi:10.1007/s40572-016-0086-z.
pmid: 27020801 |
[137] |
Wassilew N, Hoffmann H, Andrejak C, et al. Pulmonary Disease Caused by Non-Tuberculous Mycobacteria. Respiration, 2016, 91(5):386-402. doi:10.1159/000445906.
pmid: 27207809 |
[138] |
Wetzstein N, Hügel C, Wichelhaus TA, et al. Species distribution and clinical features of infection and colonisation with non-tuberculous mycobacteria in a tertiary care centre, central Germany, 2006—2016. Infection, 2019, 47(5):817-825. doi:10.1007/s15010-019-01317-2.
pmid: 31093923 |
[139] | Schwab TC, Perrig L, Göller PC, et al. Targeted next-gene-ration sequencing to diagnose drug-resistant tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis, 2024, 24(10):1162-1176. doi:10.1016/S1473-3099(24)00263-9. |
[140] | Mugetti D, Tomasoni M, Pastorino P, et al. Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members. Microorganisms, 2021, 9(4):797. doi:10.3390/microorganisms9040797. |
[141] | Pavlik I, Ulmann V, Weston RT. Clinical Relevance and Environmental Prevalence of Mycobacterium fortuitum Group Members. Comment on Mugetti et al. Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members. Microorganisms 2021, 9, 797. Microorganisms, 2021, 9(11): 2345. doi:10.3390/microorganisms9112345. |
[142] | Chang HY, Tsai WC, Lee TF, et al. Mycobacterium gordonae infection in immunocompromised and immunocompetent hosts: A series of seven cases and literature review. J Formos Med Assoc, 2021, 120(1 Pt 2):524-532. doi:10.1016/j.jfma.2020.06.029. |
[143] |
Nie J, Deng X, Zeng Q, et al. Distribution of nontuberculous mycobacteria in patients with and without HIV/AIDS in Chongqing. HIV Med, 2022, 23 Suppl 1:54-63. doi:10.1111/hiv.13249.
pmid: 35293104 |
[144] |
Yuan J, Wang Y, Wang L, et al. What do the clinical features of positive nontuberculous mycobacteria isolates from patients with HIV/AIDS in China reveal? A systematic review and meta-analysis. J Glob Health, 2023, 13:04093. doi:10.7189/jogh.13.04093.
pmid: 37651639 |
[145] | Zhou Y, Mu W, Zhang J, et al. Global prevalence of non-tuberculous mycobacteria in adults with non-cystic fibrosis bronchiectasis 2006—2021: a systematic review and meta-analysis. BMJ Open, 2022, 12(8):e055672. doi:10.1136/bmjopen-2021-055672. |
[146] | Funada M, Miyazaki Y, Nakayamada S, et al. CT informs detection and treatment options in rheumatoid arthritis complicated by pulmonary non-tuberculous mycobacterial disease from the FIRST registry. RMD Open, 2024, 10(2):e004049. doi:10.1136/rmdopen-2023-004049. |
[147] |
Kim H, Lee S, Kim JW, et al. Clinical characteristics and prognostic factors of non-tuberculous mycobacterial disease in patients with rheumatoid arthritis. Korean J Intern Med, 2024, 39(1):172-183. doi:10.3904/kjim.2023.193.
pmid: 38031367 |
[148] |
Sharma VK, Pai G, Deswarte C, et al. Disseminated Mycobacterium avium complex infection in a child with partial dominant interferon gamma receptor 1 deficiency in India. J Clin Immunol, 2015, 35(5):459-462. doi:10.1007/s10875-015-0173-1.
pmid: 26054576 |
[149] | Lake MA, Ambrose LR, Lipman MC, et al. “Why me, why now?” Using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med, 2016, 14:54. doi:10.1186/s12916-016-0606-6. |
[150] | Kim JY, Han A, Lee H, et al. The Clinical Course and Prognosis of Patients With Nontuberculous Mycobacterial Pulmonary Disease After Solid Organ Transplantation. J Korean Med Sci, 2023, 38(6):e46. doi:10.3346/jkms.2023.38.e46. |
[151] | 秦志杰, 林思然, 汪婷, 等. 抗γ干扰素自身抗体阳性的非结核分枝杆菌病患者的临床特征分析. 中华传染病杂志, 2024, 42(4):233-238. doi:10.3760/cma.j.cn311365-20231207-00177. |
[152] | 中华医学会结核病学分会临床检验专业委员会. 结核病病原学分子诊断专家共识. 中华结核和呼吸杂志, 2019, 41(9):688-695. doi:10.3760/cma.j.issn.1001-0939.2018.09.008. |
[153] | Cheng LP, Chen SH, Lou H, et al. Factors Associated with Treatment Outcome in Patients with Nontuberculous Mycobacterial Pulmonary Disease: A Large Population-Based Retrospective Cohort Study in Shanghai. Trop Med Infect Dis, 2022, 7(2):27. doi:10.3390/tropicalmed7020027. |
[154] | Zhang H, Luo M, Zhang K, et al. Species identification and antimicrobial susceptibility testing of non-tuberculous mycobacteria isolated in Chongqing, Southwest China. Epidemiol Infect, 2021, 149:e7. doi:10.1017/S0950268820003088. |
[155] | 黄海荣. 非结核分枝杆菌相关实验室检查及其结果解读. 中华结核和呼吸杂志, 2020, 43(11):910-913. doi:10.3760/cma.j.cn112147-20200316-00346. |
[156] | Pillay S, Steingart KR, Davies GR, et al. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst Rev, 2022, 5(5):CD014841. doi:10.1002/14651858.CD014841.pub2. |
[157] | Yoshida S, Suzuki K, Tsuyuguchi K, et al. Detection of rpoB mutations in rifampicin-resistant Mycobacterium kansasii. Kekkaku, 2006, 81(7):475-479. |
[158] |
Yoshida S, Tsuyuguchi K, Kobayashi T, et al. Discrepancies between the genotypes and phenotypes of clarithromycin-resistant Mycobacterium abscessus complex. Int J Tuberc Lung Dis, 2018, 22(4):413-418. doi:10.5588/ijtld.17.0673.
pmid: 29562989 |
[159] |
Mougari F, Loiseau J, Veziris N, et al. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob Chemother, 2017, 72(6):1669-1677. doi:10.1093/jac/dkx021.
pmid: 28333340 |
[160] |
Brown-Elliott BA, Iakhiaeva E, Griffith DE, et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol, 2013, 51(10): 3389-3394. doi:10.1128/JCM.01612-13.
pmid: 23946523 |
[161] | Lee SH, Yoo HK, Kim SH, et al. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med, 2014, 34(1):31-37. doi:10.3343/alm.2014.34.1.31. |
[162] | Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-Mediated Macrolide-Inducible Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother, 2020, 64(2): e01879-19. doi:10.1128/AAC.01879-19. |
[163] | 时翠林, 张建平, 唐佩军, 等. 脓肿分枝杆菌肺病治疗研究进展. 中华结核和呼吸杂志, 2021, 44(3):252-257. doi:10.3760/cma.j.cn112147-20210108-00020. |
[1] | 樊瑞芳, 代小伟, 杨新宇, 陈双双, 陈昊, 于兰, 赵琰枫, 李传友, 王嫩寒. 荧光PCR探针熔解曲线技术和DNA微阵列芯片技术鉴定分枝杆菌菌种的研究[J]. 中国防痨杂志, 2025, 47(8): 1031-1037. |
[2] | 夏辉, 赵雁林. 基于舌拭子的结核分枝杆菌复合群核酸检测方法在肺结核诊断和筛查中的应用前景与挑战[J]. 中国防痨杂志, 2025, 47(8): 976-980. |
[3] | 中国防痨协会结核病控制专业分会, 中国防痨协会标准化专业分会, 中国防痨协会老年结核病防治专业分会单位. 结核分枝杆菌感染检测技术应用专家共识[J]. 中国防痨杂志, 2025, 47(7): 813-829. |
[4] | 中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所. 耐药结核病全口服短程治疗专家共识[J]. 中国防痨杂志, 2025, 47(7): 830-839. |
[5] | 于慧敏, 郑徽, 刘二勇, 黄飞, 吴丹, 尹遵栋. 结核病疫苗免疫策略研究进展[J]. 中国防痨杂志, 2025, 47(7): 930-939. |
[6] | 李龙芬, 施春晶, 罗云, 张华杰, 刘俊, 王戈, 赵雁红, 袁丽娟, 李珊, 李文明, 沈凌筠. 基于机器学习建立HIV感染并发非结核分枝杆菌病的预测模型与验证[J]. 中国防痨杂志, 2025, 47(6): 708-718. |
[7] | 谷玉珍, 陈思怡, 黄海荣, 于霞. 来法莫林对分枝杆菌体外抑菌效果评价[J]. 中国防痨杂志, 2025, 47(6): 732-737. |
[8] | 中国防痨协会结核病基础专业分会. 中国结核分枝杆菌微量肉汤稀释法药物敏感性试验标准化专家共识[J]. 中国防痨杂志, 2025, 47(5): 535-545. |
[9] | 中国人民解放军总医院第八医学中心结核病医学部 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 泌尿系统结核的诊断与治疗专家共识[J]. 中国防痨杂志, 2025, 47(5): 546-558. |
[10] | 刘巧, 李忠奇, 竺丽梅, 陆伟. 中国结核病防治服务体系运行现状、问题与对策研究[J]. 中国防痨杂志, 2025, 47(5): 559-568. |
[11] | 应广智, 蔡青山, 马晓卿, 陈凌燕, 陈园园. Nanopore靶向测序在呼吸道样本中检测非结核分枝杆菌的诊断价值研究[J]. 中国防痨杂志, 2025, 47(5): 589-596. |
[12] | 王苑柠, 杜宗敏. CRISPR/Cas分子诊断技术在结核分枝杆菌耐药性检测中的研究进展[J]. 中国防痨杂志, 2025, 47(5): 666-672. |
[13] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[14] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[15] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||