中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (7): 930-939.doi: 10.19982/j.issn.1000-6621.20250008
于慧敏1,2, 郑徽1,2, 刘二勇3, 黄飞3, 吴丹1,2, 尹遵栋1,2()
收稿日期:
2025-01-06
出版日期:
2025-07-10
发布日期:
2025-07-03
通信作者:
尹遵栋,Email:基金资助:
Yu Huimin1,2, Zheng Hui1,2, Liu Eryong3, Huang Fei3, Wu Dan1,2, Yin Zundong1,2()
Received:
2025-01-06
Online:
2025-07-10
Published:
2025-07-03
Contact:
Yin Zundong, Email:Supported by:
摘要:
结核病是全球重要的公共卫生问题,卡介苗(BCG)虽可有效预防儿童重症结核病,但对青少年和成人等结核病高风险人群的保护效果有限,无法有效降低全球结核病疾病负担。本文分别从BCG免疫策略优化(包括BCG接种途径和BCG再接种)和新型疫苗研发(包括BCG取代疫苗、BCG加强疫苗和治疗性疫苗)两个方面,总结了全球结核病疫苗免疫策略研究进展,分析了不同策略特点及挑战,为结核病防控工作提供参考依据。
中图分类号:
于慧敏, 郑徽, 刘二勇, 黄飞, 吴丹, 尹遵栋. 结核病疫苗免疫策略研究进展[J]. 中国防痨杂志, 2025, 47(7): 930-939. doi: 10.19982/j.issn.1000-6621.20250008
Yu Huimin, Zheng Hui, Liu Eryong, Huang Fei, Wu Dan, Yin Zundong. Research progress on immunization strategies for tuberculosis vaccines[J]. Chinese Journal of Antituberculosis, 2025, 47(7): 930-939. doi: 10.19982/j.issn.1000-6621.20250008
表1
目前处于临床试验阶段的部分结核病疫苗情况
疫苗 | 研发机构 | 国家 | 种类 | 功能 | 接种方式 | 人群 | 临床试验 阶段 |
---|---|---|---|---|---|---|---|
Ad5Ag85A | 麦克马斯特大学、康希诺 | 加拿大 | 病毒载体 疫苗 | 卡介苗加强免疫 | 肌肉、 气雾剂吸入 | 成人 | Ⅰ期 |
TB/FLU-05E | 斯莫罗金采夫流感研究所 | 俄罗斯 | 病毒载体 疫苗 | 卡介苗加强免疫 | 鼻内 | 成人 | Ⅰ期 |
BNT164a1和 BNT164b1 | Biontech | 德国 | mRNA 疫苗 | 卡介苗加强免疫 | 肌肉 | 成人 | Ⅰ期 |
AEC/BC02 | 安徽智飞龙科马生物制药公司 | 中国 | 亚单位 疫苗 | 预防结核分枝杆菌潜伏感染发展为活动性结核病 | 肌肉 | 成人 | Ⅱa期 |
ID93/GLA-SE | Quratis、美国国立卫生研究院、美国国际过敏和传染病研究所 | 韩国、 美国 | 亚单位 疫苗 | 卡介苗加强免疫、预防结核分枝杆菌潜伏感染发展为活动性结核病、辅助治疗结核病、预防结核病复发 | 肌肉 | 青少年、成人 | Ⅱa期 |
ChAdOx1.85A | 牛津大学 | 英国 | 病毒载体 疫苗 | 卡介苗加强免疫 | 肌肉、 气雾剂吸入 | 青少年、成人 | Ⅱb期 |
MVA85A | 牛津大学 | 英国 | 病毒载体 疫苗 | 卡介苗加强免疫 | 皮内、肌肉、 气雾剂吸入 | 婴儿、儿童、 青少年、成人 | Ⅱb期 |
DAR-901 | 达特茅斯学院、圣路易斯大学 | 美国 | 分枝杆菌 灭活疫苗 | 卡介苗加强免疫 | 皮内 | 青少年、成人 | Ⅱb期 |
RUTI | Archivel Farma, S.L. | 西班牙 | 分枝杆菌 灭活疫苗 | 预防结核分枝杆菌潜伏感染发展为活动性结核病 | 皮下、肌肉 | 成人 | Ⅱb期 |
H56∶IC31 | 丹麦国立血清研究所、Valneva、IAVI | 丹麦 | 亚单位 疫苗 | 卡介苗加强免疫、辅助治疗结核病、预防结核病复发 | 肌肉 | 青少年、成人 | Ⅱb期 |
MTBVAC | 萨拉戈萨大学、Biofabri、IAVI、TBVI | 西班牙、 美国 | 减毒活 疫苗 | 基础免疫、卡介苗加强免疫 | 皮内 | 婴儿、 青少年、成人 | Ⅲ期 |
VPM1002 | SIIPL、VPM | 印度、 德国 | 重组 卡介苗 | 基础免疫、预防结核病复发 | 皮内 | 婴儿、儿童、 青少年、成人 | Ⅲ期 |
MIP/Immuvac | 印度医学研究理事会、Cadila Pharmaceuticals | 印度 | 分枝杆菌 灭活疫苗 | 辅助治疗结核病 | 皮内 | 成人 | Ⅲ期 |
GamTBvac | 俄罗斯卫生部 | 俄罗斯 | 亚单位 疫苗 | 卡介苗加强免疫 | 皮下 | 成人 | Ⅲ期 |
M72/AS01E | GSK、比尔及梅琳达·盖茨医学研究所 | 英国、 美国 | 亚单位 疫苗 | 预防结核分枝杆菌潜伏感染发展为活动性结核病 | 肌肉 | 儿童、 青少年、成人 | Ⅲ期 |
[1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[2] | Chen J, Gao L, Wu X, et al. BCG-induced trained immunity: history, mechanisms and potential applications. J Transl Med, 2023, 21(1): 106. doi:10.1186/s12967-023-03944-8. |
[3] | Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L,et al. BCG: a vaccine with multiple faces. Hum Vaccin Immunother, 2020, 16(8): 1841-1850. doi:10.1080/21645515.2019.1706930. |
[4] | Jiang F, Sun T, Cheng P, et al. A Summary on Tuberculosis Vaccine Development-Where to Go?. J Pers Med, 2023, 13(3):408. doi:10.3390/jpm13030408. |
[5] |
Silver RF, Xia M, Storer CE, et al. Distinct gene expression signatures comparing latent tuberculosis infection with different routes of Bacillus Calmette-Guérin vaccination. Nat Commun, 2023, 14(1): 8507. doi:10.1038/s41467-023-44136-8.
pmid: 38129388 |
[6] |
Hoft DF, Xia M, Zhang GL, et al. PO and ID BCG vaccination in humans induce distinct mucosal and systemic immune responses and CD4+ T cell transcriptomal molecular signatures. Mucosal Immunol, 2018, 11(2): 486-495. doi:10.1038/mi.2017.67.
pmid: 28853442 |
[7] | Vela Ramirez JE, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev, 2017, 114:116-131. doi:10.1016/j.addr.2017.04.008. |
[8] |
Derrick SC, Kolibab K, Yang A, et al. Intranasal administration of Mycobacterium bovis BCG induces superior protection against aerosol infection with Mycobacterium tuberculosis in mice. Clin Vaccine Immunol, 2014, 21(10): 1443-1451. doi:10.1128/CVI.00394-14.
pmid: 25143340 |
[9] | Kaveh DA, Garcia-Pelayo MC, Bull NC, et al. Airway delivery of both a BCG prime and adenoviral boost drives CD4 and CD 8 T cells into the lung tissue parenchyma. Sci Rep, 2020, 10(1): 18703. doi:10.1038/s41598-020-75734-x. |
[10] |
Satti I, Marshall JL, Harris SA, et al. Safety of a controlled human infection model of tuberculosis with aerosolised, live-attenuated Mycobacterium bovis BCG versus intradermal BCG in BCG-naive adults in the UK: a dose-escalation, randomised, controlled, phase 1 trial. Lancet Infect Dis, 2024, 24(8): 909-921. doi:10.1016/S1473-3099(24)00143-9.
pmid: 38621405 |
[11] | Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788): 95-102. doi:10.1038/s41586-019-1817-8. |
[12] | Rakshit S, Ahmed A, Adiga V, et al. BCG revaccination boosts adaptive polyfunctional Th1/Th17 and innate effectors in IGRA+ and IGRA- Indian adults. JCI Insight, 2019, 4(24): e130540. doi:10.1172/jci.insight.130540. |
[13] | Velayutham B, Thiruvengadam K, Kumaran PP, et al. Revisi-ting the Chingleput BCG vaccination trial for the impact of BCG revaccination on the incidence of tuberculosis disease. Indian J Med Res, 2023, 157(2/3): 152-159. doi:10.4103/ijmr.ijmr_1540_22. |
[14] |
Rodrigues LC, Pereira SM, Cunha SS, et al. Effect of BCG revaccination on incidence of tuberculosis in school-aged children in Brazil: the BCG-REVAC cluster-randomised trial. Lancet, 2005, 366(9493): 1290-1295. doi:10.1016/S0140-6736(05)67145-0.
pmid: 16214599 |
[15] | Glynn JR, Fielding K, Mzembe T, et al. BCG re-vaccination in Malawi: 30-year follow-up of a large, randomised, double-blind, placebo-controlled trial. Lancet Glob Health, 2021, 9(10): e1451-e1459. doi:10.1016/S2214-109X(21)00309-0. |
[16] | Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M.tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med, 2018, 379(2): 138-149. doi:10.1056/NEJMoa1714021. |
[17] |
Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013, 31(9): 1340-1348. doi:10.1016/j.vaccine.2012.12.053.
pmid: 23290835 |
[18] | Loxton AG, Knaul JK, Grode L, et al. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol, 2017, 24(2): e00439-16. doi:10.1128/CVI.00439-16. |
[19] | Cotton MF, Madhi SA, Luabeya AK, et al. Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: a randomised, phase 2 non-inferiority double-blind controlled trial. Lancet Infect Dis, 2022, 22(10): 1472-1483. doi:10.1016/S1473-3099(22)00222-5. |
[20] | Aguilo N, Uranga S, Marinova D, et al. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb), 2016, 96:71-74. doi:10.1016/j.tube.2015.10.010. |
[21] | White AD, Sibley L, Sarfas C, et al. MTBVAC vaccination protects rhesus macaques against aerosol challenge with M.tuberculosis and induces immune signatures analogous to those observed in clinical studies. NPJ Vaccines, 2021, 6(1): 4. doi:10.1038/s41541-020-00262-8. |
[22] | Tameris M, Mearns H, Penn-Nicholson A, et al. Live-attenua-ted Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med, 2019, 7(9): 757-770. doi:10.1016/S2213-2600(19)30251-6. |
[23] |
Andersen P, Doherty TM. The success and failure of BCG-implications for a novel tuberculosis vaccine. Nat Rev Microbiol, 2005, 3(8): 656-662. doi:10.1038/nrmicro1211.
pmid: 16012514 |
[24] |
Santosuosso M, Zhang X, McCormick S, et al. Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD 8 T cells within the airway lumen. J Immunol, 2005, 174(12): 7986-7994. doi:10.4049/jimmunol.174.12.7986.
pmid: 15944305 |
[25] | Xing Z, McFarland CT, Sallenave JM, et al. Intranasal mucosal boosting with an adenovirus-vectored vaccine markedly enhances the protection of BCG-primed guinea pigs against pulmonary tuberculosis. PLoS One, 2009, 4(6): e5856. doi:10.1371/journal.pone.0005856. |
[26] | Pérez de Val B, Villarreal-Ramos B, Nofrarías M, et al. Goats primed with Mycobacterium bovis BCG and boosted with a recombinant adenovirus expressing Ag85A show enhanced protection against tuberculosis. Clin Vaccine Immunol, 2012, 19(9): 1339-1347. doi:10.1128/CVI.00275-12. |
[27] |
Whelan A, Court P, Xing Z, et al. Immunogenicity comparison of the intradermal or endobronchial boosting of BCG vaccinates with Ad5-85 A. Vaccine, 2012, 30(44): 6294-6300. doi:10.1016/j.vaccine.2012.07.086.
pmid: 22885013 |
[28] | Smaill F, Jeyanathan M, Smieja M, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med, 2013, 5(205): 205ra134. doi:10.1126/scitranslmed.3006843. |
[29] | Jeyanathan M, Fritz DK, Afkhami S, et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight, 2022, 7(3): e155655. doi:10.1172/jci.insight.155655. |
[30] |
Stosman KI, Aleksandrov AG, Sivak KV, et al. Evaluation of the immunotoxicity and allergenicity of a new intranasal influenza vector vaccine against tuberculosis carrying TB10.4 and HspX antigens. Iran J Basic Med Sci, 2023, 26(5): 558-563. doi:10.22038/IJBMS.2023.68440.14936.
pmid: 37051099 |
[31] | Sergeeva M, Romanovskaya-Romanko E, Zabolotnyh N, et al. Mucosal Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens Provides Protection against Mycobacterium tuberculosis in Mice and Guinea Pigs. Vaccines (Basel), 2021, 9(4):394. doi:10.3390/vaccines9040394. |
[32] | Bertholet S, Ireton GC, Ordway DJ, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010, 2(53): 53ra74. doi:10.1126/scitranslmed.3001094. |
[33] |
Choi YH, Kang YA, Park KJ, et al. Safety and Immunogenicity of the ID93+GLA-SE Tuberculosis Vaccine in BCG-Vaccinated Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial. Infect Dis Ther, 2023, 12(6): 1605-1624. doi:10.1007/s40121-023-00806-0.
pmid: 37166567 |
[34] |
Penn-Nicholson A, Tameris M, Smit E, et al. Safety and immunogenicity of the novel tuberculosis vaccine ID93+GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 Trial. Lancet Respir Med, 2018, 6(4): 287-298. doi:10.1016/S2213-2600(18)30077-8.
pmid: 29595510 |
[35] |
Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011, 17(2): 189-194. doi:10.1038/nm.2285.
pmid: 21258338 |
[36] | Lin PL, Dietrich J, Tan E, et al. The multistage vaccine H 56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest, 2012, 122(1): 303-314. doi:10.1172/JCI46252. |
[37] | Billeskov R, Tan EV, Cang M, et al. Testing the H56 Vaccine Delivered in 4 Different Adjuvants as a BCG-Booster in a Non-Human Primate Model of Tuberculosis. PLoS One, 2016, 11(8): e0161217. doi:10.1371/journal.pone.0161217. |
[38] | Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33): 4130-4140. doi:10.1016/j.vaccine.2015.06.051. |
[39] | Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am J Respir Crit Care Med, 2019, 199(2): 220-231. doi:10.1164/rccm.201802-0366OC. |
[40] | Tkachuk AP, Gushchin VA, Potapov VD, et al. Multi-subunit BCG booster vaccine GamTBvac: Assessment of immunogenicity and protective efficacy in murine and guinea pig TB models. PLoS One, 2017, 12(4): e0176784. doi:10.1371/journal.pone.0176784. |
[41] | Vasina DV, Kleymenov DA, Manuylov VA, et al. First-In-Human Trials of GamTBvac, a Recombinant Subunit Tuberculosis Vaccine Candidate: Safety and Immunogenicity Assessment. Vaccines (Basel), 2019, 7(4):166. doi:10.3390/vaccines7040166. |
[42] | Tkachuk AP, Bykonia EN, Popova LI, et al. Safety and Immunogenicity of the GamTBvac, the Recombinant Subunit Tuberculosis Vaccine Candidate: A Phase Ⅱ, Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study. Vaccines (Basel), 2020, 8(4): 652. doi:10.3390/vaccines8040652. |
[43] | Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med, 2018, 379(17):1621-1634. doi:10.1056/NEJMoa1803484. |
[44] | Tait DR, Hatherill M, et al.Van Der Meeren O, Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019, 381(25): 2429-2439. doi:10.1056/NEJMoa1909953. |
[45] |
von Reyn CF, Mtei L, Arbeit RD, et al. Prevention of tuberculosis in Bacille Calmette-Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010, 24(5): 675-685. doi:10.1097/QAD.0b013e3283350f1b.
pmid: 20118767 |
[46] | Lahey T, Laddy D, Hill K, et al. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis. PLoS One, 2016, 11(12): e0168521. doi:10.1371/journal.pone.0168521. |
[47] | von Reyn CF, Lahey T, Arbeit RD, et al. Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: A randomized, controlled trial of DAR-901. PLoS One, 2017, 12(5): e0175215. doi:10.1371/journal.pone.0175215. |
[48] | Munseri P, Said J, Amour M, et al. DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial. Vaccine, 2020, 38(46): 7239-7245. doi:10.1016/j.vaccine.2020.09.055. |
[49] | Clark S, Lanni F, Marinova D, et al. Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG’s Protection Against Tuberculosis. J Infect Dis, 2017, 216(5): 525-533. doi:10.1093/infdis/jix030. |
[50] | Spertini F, Audran R, Chakour R, et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase Ⅰ trial. Lancet Respir Med, 2015, 3(12): 953-962. doi:10.1016/S2213-2600(15)00435-X. |
[51] | Hu Z, Wong KW, Zhao HM, et al. Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD 8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice. Mol Ther, 2017, 25(5): 1222-1233. doi:10.1016/j.ymthe.2017.02.018. |
[52] | Hu Z, Xia J, Wu J, et al. A multistage Sendai virus vaccine incorporating latency-associated antigens induces protection against acute and latent tuberculosis. Emerg Microbes Infect, 2024, 13(1): 2300463. doi:10.1080/22221751.2023.2300463. |
[53] | Stylianou E, Pinpathomrat N, Sampson O, et al. A five-antigen Esx-5a fusion delivered as a prime-boost regimen protects against M.tb challenge. Front Immunol, 2023, 14:1263457. doi:10.3389/fimmu.2023.1263457. |
[54] | Woodworth JS, Clemmensen HS, Battey H, et al. A Mycobacterium tuberculosis-specific subunit vaccine that provides synergistic immunity upon co-administration with Bacillus Calmette-Guérin. Nat Commun, 2021, 12(1): 6658. doi:10.1038/s41467-021-26934-0. |
[55] | Ma J, Teng X, Wang X, et al. A Multistage Subunit Vaccine Effectively Protects Mice Against Primary Progressive Tuberculosis, Latency and Reactivation. EBioMedicine, 2017, 22(1):143-154. doi:10.1016/j.ebiom.2017.07.005. |
[56] | Liu X, Peng J, Hu L, et al. A multistage Mycobacterium tuberculosis subunit vaccine LT 70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother, 2016, 12(7): 1670-1677. doi:10.1080/21645515.2016.1141159. |
[57] |
Gonçalves ED, Bonato VL, da Fonseca DM, et al. Improve protective efficacy of a TB DNA-HSP 65 vaccine by BCG priming. Genet Vaccines Ther, 2007, 5:7. doi:10.1186/1479-0556-5-7.
pmid: 17714584 |
[58] |
Satti I, Meyer J, Harris SA, et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect Dis, 2014, 14(10): 939-946. doi:10.1016/S1473-3099(14)70845-X.
pmid: 25151225 |
[59] | Wajja A, Nassanga B, Natukunda A, et al. Safety and immunogenicity of ChAdOx 1 85A prime followed by MVA85A boost compared with BCG revaccination among Ugandan adolescents who received BCG at birth: a randomised, open-label trial. Lancet Infect Dis, 2024, 24(3): 285-296. doi:10.1016/S1473-3099(23)00501-7. |
[60] | Wilkie M, Satti I, Minhinnick A, et al. A phase Ⅰ trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx 1 85A prime-MVA85A boost in healthy UK adults. Vaccine, 2020, 38(4): 779-789. doi:10.1016/j.vaccine.2019.10.102. |
[61] | Lu J B, Chen BW, Wang GZ, et al. Recombinant tuberculosis vaccine AEC/BC 02 induces antigen-specific cellular responses in mice and protects guinea pigs in a model of latent infection. J Microbiol Immunol Infect, 2015, 48(6): 597-603. doi:10.1016/j.jmii.2014.03.005. |
[62] | 卢锦标, 陈保文, 邓海清, 等. 结核分枝杆菌感染豚鼠接种重组结核疫苗AEC/BC02后的超敏反应分析. 中华结核和呼吸杂志, 2016, 39(7):524-528. doi:10.3760/cma.j.issn.1001-0939.2016.07.007. |
[63] | Lu J, Guo X, Wang C, et al. Therapeutic Effect of Subunit Vaccine AEC/BC 02 on Mycobacterium tuberculosis Post-Chemotherapy Relapse Using a Latent Infection Murine Model. Vaccines (Basel), 2022, 10(5):825. doi:10.3390/vaccines10050825. |
[64] | Guo X, Lu J, Li J, et al. The Subunit AEC/BC 02 Vaccine Combined with Antibiotics Provides Protection in Mycobacterium tuberculosis-Infected Guinea Pigs. Vaccines (Basel), 2022, 10(12):2164. doi:10.3390/vaccines10122164. |
[65] | Baldwin SL, Reese VA, Larsen SE, et al. Therapeutic efficacy against Mycobacterium tuberculosis using ID93 and liposomal adjuvant formulations. Front Microbiol, 2022, 13:935444. doi:10.3389/fmicb.2022.935444. |
[66] |
Guirado E, Gil O, Cáceres N, et al. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis. Clin Vaccine Immunol, 2008, 15(8): 1229-1237. doi:10.1128/CVI.00094-08.
pmid: 18524883 |
[67] |
Domingo M, Gil O, Serrano E, et al. Effectiveness and safety of a treatment regimen based on isoniazid plus vaccination with Mycobacterium tuberculosis cells’ fragments: field-study with naturally Mycobacterium caprae-infected goats. Scand J Immunol, 2009, 69(6): 500-507. doi:10.1111/j.1365-3083.2009.02251.x.
pmid: 19439010 |
[68] |
Vilaplana C, Montané E, Pinto S, et al. Double-blind, randomized, placebo-controlled Phase Ⅰ Clinical Trial of the therapeutical antituberculous vaccine RUTI. Vaccine, 2010, 28(4): 1106-1116. doi:10.1016/j.vaccine.2009.09.134.
pmid: 19853680 |
[69] | Nell AS, D’lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase Ⅱ clinical trial in patients with latent tuberculosis infection. PLoS One, 2014, 9(2): e89612. doi:10.1371/journal.pone.0089612. |
[70] |
Chahar M, Rawat KD, Reddy PVJ, et al. Potential of adjunctive Mycobacterium w (MIP) immunotherapy in reducing the duration of standard chemotherapy against tuberculosis. Indian J Tuberc, 2018, 65(4): 335-344. doi:10.1016/j.ijtb.2018.08.004.
pmid: 30522622 |
[71] | Sharma SK, Katoch K, Sarin R, et al. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category Ⅱ pulmonary tuberculosis in a randomized trial. Sci Rep, 2017, 7(1): 3354. doi:10.1038/s41598-017-03514-1. |
[72] | Jenum S, Tonby K, Rueegg CS, et al. A Phase Ⅰ/Ⅱ randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients. Nat Commun, 2021, 12(1): 6774. doi:10.1038/s41467-021-27029-6. |
[73] |
Vega V, Rodríguez S, Van der Stuyft P, et al. Recurrent TB: a systematic review and meta-analysis of the incidence rates and the proportions of relapses and reinfections. Thorax, 2021, 76(5): 494-502. doi:10.1136/thoraxjnl-2020-215449.
pmid: 33547088 |
[74] | Day TA, Penn-Nicholson A, Luabeya AKK, et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93+GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir Med, 2021, 9(4): 373-386. doi:10.1016/S2213-2600(20)30319-2. |
[75] | Tait D, Diacon A, Borges H, et al. Safety and Immunogenicity of the H56:IC31 Tuberculosis Vaccine Candidate in Adults Successfully Treated for Drug-Susceptible Pulmonary Tuberculosis: A Phase 1 Randomized Trial. J Infect Dis, 2024, 230(5): 1262-1270. doi:10.1093/infdis/jiae170. |
[76] | Kagina BM, Abel B, Scriba TJ, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med, 2010, 182(8): 1073-1079. doi:10.1164/rccm.201003-0334OC. |
[77] |
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines, 2024, 9(1): 208. doi:10.1038/s41541-024-01004-w.
pmid: 39478007 |
[78] | Stewart EL, Counoupas C, Quan DH, et al. Lung IL-17A-Producing CD4+ T Cells Correlate with Protection after Intrapulmonary Vaccination with Differentially Adjuvanted Tuberculosis Vaccines. Vaccines (Basel), 2024, 12(2):128. doi:10.3390/vaccines12020128. |
[79] |
Kaufmann SH. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat Rev Microbiol, 2007, 5(7): 491-504. doi:10.1038/nrmicro1688.
pmid: 17558425 |
[80] | Knight GM, Griffiths UK, Sumner T, et al. Impact and cost-effectiveness of new tuberculosis vaccines in low- and middle-income countries. Proc Natl Acad Sci U S A, 2014, 111(43): 15520-15525. doi:10.1073/pnas.1404386111. |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会标准化专业分会, 中国防痨协会老年结核病防治专业分会单位. 结核分枝杆菌感染检测技术应用专家共识[J]. 中国防痨杂志, 2025, 47(7): 813-829. |
[2] | 中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所. 耐药结核病全口服短程治疗专家共识[J]. 中国防痨杂志, 2025, 47(7): 830-839. |
[3] | 王敬, 王庆枫, 荆玮, 王宇津, 王雪钰, 黄海荣, 初乃惠, 聂文娟. 18~65岁人群重组结核杆菌融合蛋白皮肤试验应用剂量及在3~17岁和66~75岁人群中的安全性:一项随机、盲法、阳性对照Ⅱ期临床试验[J]. 中国防痨杂志, 2025, 47(7): 840-845. |
[4] | 张灿有, 夏愔愔, 陈卉, 赵飞, 王黎霞, 张慧, 成君. 基于社区的老年人肺结核主动筛查:一项基于多中心队列研究的策略与效果分析[J]. 中国防痨杂志, 2025, 47(7): 846-854. |
[5] | 钟毅, 于胜男, 张宇琦, 景睿, 李秀君. 基于结构方程模型的公众结核病防治知信行现状及相关性[J]. 中国防痨杂志, 2025, 47(7): 855-862. |
[6] | 周芳静, 梁鸿迪, 李建伟, 陈瑜晖, 温文沛, 吴惠忠. 基于两水平模型评价广东省公众结核病防治核心信息知晓情况[J]. 中国防痨杂志, 2025, 47(7): 863-869. |
[7] | 范江静, 周萌, 徐祖辉, 张传芳. 湖南省基层医疗机构结核病健康管理人员职业满意度及其影响因素分析[J]. 中国防痨杂志, 2025, 47(7): 870-877. |
[8] | 杨泽亮, 马子淳, 尚媛媛, 石金, 荆玮, 逄宇, 秦林. 靶向二代测序技术对无痰肺结核患者的诊断效能评估[J]. 中国防痨杂志, 2025, 47(7): 878-883. |
[9] | 郑壮彬, 毕利军, 张立群. 结核分枝杆菌膜蛋白MmpS5/MmpL5与贝达喹啉的相互作用研究[J]. 中国防痨杂志, 2025, 47(7): 884-892. |
[10] | 陈双双, 王嫩寒, 赵琰枫, 樊瑞芳, 田丽丽, 陈昊, 罗萍, 李洁, 李传友, 代小伟. MeltPro两步法在结核病诊断及耐药筛查中的应用价值[J]. 中国防痨杂志, 2025, 47(7): 893-900. |
[11] | 王美霁, 刘美君, 陈睿, 夏露, 刘旭辉, 杨杨, 刘华瑞, 叶丹, 费镇涛, 谢师琪, 杨舒琪, 潘磊, 张晓林, 徐飚, 李锋. 儿童结核性脑膜炎临床特征及预后不良危险因素分析[J]. 中国防痨杂志, 2025, 47(7): 907-913. |
[12] | 韦柳迎, 荆玮, 刘志峰, 聂文娟, 黄献珍, 黄连飘, 班凤婷, 林艳荣, 阳世雄, 朱庆东. 含贝达喹啉方案治疗南宁市耐多药/利福平耐药肺结核患者成本效果分析:一项回顾性队列研究[J]. 中国防痨杂志, 2025, 47(7): 914-920. |
[13] | 毛莉蓉, 聂艳辉, 安红娟, 王睿岚, 董恩军, 苏悦, 赵文娟, 杜经丽, 安慧茹. 质谱检测技术在骨关节结核诊断中的应用效能及研究进展[J]. 中国防痨杂志, 2025, 47(7): 940-946. |
[14] | 王煜童, 刘宇红, 李亮. 抗结核药物引起的精神心理不良反应研究进展[J]. 中国防痨杂志, 2025, 47(7): 947-953. |
[15] | 姚秀钰, 杜莹, 陈斯婕, 耿红, 高磊. 传染性肺结核患者居家隔离治疗管理期间常见的护理问题与对策[J]. 中国防痨杂志, 2025, 47(6): 681-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||