中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (1): 102-111.doi: 10.19982/j.issn.1000-6621.20240353
收稿日期:
2024-08-20
出版日期:
2025-01-10
发布日期:
2025-01-02
通信作者:
萨日娜,王芙蓉
E-mail:sarina813@163.com;13347142277@163.com
基金资助:
Liu Ruihua1, Sarina 1(), Wang Furong1,2(
)
Received:
2024-08-20
Online:
2025-01-10
Published:
2025-01-02
Contact:
Sarina ,Wang Furong
E-mail:sarina813@163.com;13347142277@163.com
Supported by:
摘要:
肺癌是我国癌症死亡的主要原因,同时,我国作为结核分枝杆菌(Mycobacterium tuberculosis, MTB)感染的高发国家,拥有大量肺结核合并肺癌的患者群体。MTB感染重塑了宿主免疫系统,为肺癌的发生与发展提供了有利的微环境。目前,针对肺结核或肺癌的单一疗法,在肺结核合并肺癌的患者中效果有限,甚至可能相互干扰。笔者分析了MTB感染促进肺癌发生与发展的具体机制、肺癌与肺结核单独存在时的临床表现、肺结核合并肺癌患者的诊断过程,并进一步探讨了针对此类患者的综合治疗策略。
中图分类号:
刘瑞花, 萨日娜, 王芙蓉. 肺癌与肺结核在疾病发生与发展中相互影响的研究进展[J]. 中国防痨杂志, 2025, 47(1): 102-111. doi: 10.19982/j.issn.1000-6621.20240353
Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression[J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. doi: 10.19982/j.issn.1000-6621.20240353
[1] | Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent, 2024, 4(1):47-53. doi:10.1016/j.jncc.2024.01.006. |
[2] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[3] | RABiNOVICH RM. Combined tuberculosis and primary lung cancer. Klin Med (Mosk), 1958, 36(12):57-63. |
[4] | Budisan L, Zanoaga O, Braicu C, et al. Links between Infections, Lung Cancer, and the Immune System. J Int J Mol Sci, 2021, 22(17):9394. doi:10.3390/ijms22179394. |
[5] | McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. J Infect Genet Evol, 2020, 81:104204. doi:10.1016/j.meegid.2020.104204. |
[6] |
Anastasopoulou A, Ziogas DC, Samarkos M, et al. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J Immunother Cancer, 2019, 7(1):239. doi:10.1186/s40425-019-0717-7.
URL pmid: 31484550 |
[7] | Moule MG, Cirillo JD. Mycobacterium tuberculosis Dissemination Plays a Critical Role in Pathogenesis. J Front Cell Infect Microbiol, 2020, 10:65. doi:10.3389/fcimb.2020.00065. |
[8] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[9] | Luczynski P, Poulin P, Romanowski K, et al. Tuberculosis and risk of cancer: A systematic review and meta-analysis. PLoS One, 2022, 17(12):e0278661. doi:10.1371/journal.pone.0278661. |
[10] | Abdeahad H, Salehi M, Yaghoubi A, et al. Previous pulmonary tuberculosis enhances the risk of lung cancer: systematic reviews and meta-analysis. J Infect Dis (Lond), 2022, 54(4):255-268. doi:10.1080/23744235.2021.2006772. |
[11] | Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. J Front Immunol, 2022, 13:747799. doi:10.3389/fimmu.2022.747799. |
[12] | Hackett EE, Charles-Messance H, O’Leary SM, et al. Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21.J Cell Reports, 2020, 30(1):124-136.e124. doi:10.1016/j.celrep.2019.12.015. |
[13] | Rothchild AC, Olson GS, Nemeth J, et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response to Mycobacterium tuberculosis in vivo. J Sci Immunol, 2019, 4(37):eaaw6693. doi:10.1126/sciimmunol.aaw6693. |
[14] | Koh HM, Han N. The expression of tumor necrosis factor receptor 2 is correlated with the prognosis of cancer: a systematic review and meta-analysis. J Transl Cancer Res, 2024, 13(8):4231-4241. doi:10.21037/tcr-24-275. |
[15] | Gelfo V, Romaniello D, Mazzeschi M, et al. Roles of IL-1 in Cancer: From Tumor Progression to Resistance to Targeted Therapies. J Int J Mol Sci, 2020, 20(17):6009. doi:10.3390/ijms21176009. |
[16] | Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. J Cells, 2021, 10(8):1879. doi:10.3390/cells10081879. |
[17] | Pouremamali F, Pouremamali A, Dadashpour M, et al. An update of Nrf 2 activators and inhibitors in cancer prevention/promotion. J Cell Commun Signal, 2022, 20(1):100. doi:10.1186/s12964-022-00906-3. |
[18] | Singh A, Daemen A, Nickles D, et al. NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. J Clin Cancer Res, 2021, 27(3):877-888. doi:10.1158/1078-0432.CCR-20-1985. |
[19] | Bica-Pop C, Cojocneanu-Petric R, Magdo L, et al. Overview upon miR-21 in lung cancer: focus on NSCLC. J Cell Mol Life Sci, 2018, 75(19):3539-3551. doi:10.1007/s00018-018-2877-x. |
[20] | Wang W, Li X, Liu C, et al. MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: a systematic review and meta-analysis. J Biosci Rep, 2022, 42(5):BSR20211653. doi:10.1042/BSR20211653. |
[21] | Huang L, Nazarova EV, Tan S, et al. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med, 2018, 215(4):1135-1152. doi:10.1084/jem.20172020. |
[22] | Alikhanyan K, Chen Y, Kraut S, et al. Targeting alveolar macrophages shows better treatment response than deletion of interstitial macrophages in EGFR mutant lung adenocarcinoma. J Immun Inflamm Dis, 2020, 8(2):181-187. doi:10.1002/iid3.293. |
[23] | Gabrusiewicz K, Li X, Wei J, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L 1 expression on human monocytes. J Oncoimmunology, 2018, 7(4):e1412909. doi:10.1080/2162402X.2017.1412909. |
[24] | Pisu D, Huang L, Narang V, et al. Single cell analysis of M.tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med, 2021, 218(9):e20210615. doi:10.1084/jem.20210615. |
[25] | Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. J Pathog Dis, 2018, 76(4):fty037. doi:10.1093/femspd/fty037. |
[26] |
Pradhan G, Shrivastva R, Mukhopadhyay S. Mycobacterial PknG Targets the Rab7l1 Signaling Pathway To Inhibit Phagosome-Lysosome Fusion. J Immunol, 2018, 201(5):1421-1433. doi:10.4049/jimmunol.1800530.
URL pmid: 30037848 |
[27] | Wang J, Ge P, Lei Z, et al. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep, 2021, 22(6):e52175. doi:10.15252/embr.202052175. |
[28] | Mittal E, Skowyra ML, Uwase G, et al. Mycobacterium tuberculosis Type Ⅶ Secretion System Effectors Differentially Impact the ESCRT Endomembrane Damage Response. J mBio, 2018, 9(6):e01765-e01718. doi:10.1128/mBio.01765-18. |
[29] | Liu G, Pei F, Yang F, et al. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. J Int J Mol Sci, 2017, 18(2):367. doi:10.3390/ijms18020367. |
[30] | Miao CC, Hwang W, Chu LY, et al. LC3A-mediated autophagy regulates lung cancer cell plasticity. Autophagy, 2021, 18(4):921-934. doi:10.1080/15548627.2021.1964224. |
[31] |
Wheeler DB, Zoncu R, Root DE, et al. Identification of an oncogenic RAB protein. Science, 2015, 350(6257):211-217. doi:10.1126/science.aaa4903.
URL pmid: 26338797 |
[32] | Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487):eaaw5473. doi:10.1126/science.aaw5473. |
[33] |
Tan Y, Li J, Zhao G, et al. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat Commun, 2022, 13(1):4554. doi:10.1038/s41467-022-32101-w.
URL pmid: 35931676 |
[34] |
Judd J, Abdel Karim N, Khan H, et al. Characterization of KRAS Mutation Subtypes in Non-small Cell Lung Cancer. Mol Cancer Ther, 2021, 20(12):2577-2584. doi:10.1158/1535-7163.MCT-21-0201.
URL pmid: 34518295 |
[35] | Kitai H, Choi PH, Yang YC, et al. Combined inhibition of KRASG12C and mTORC 1 kinase is synergistic in non-small cell lung cancer. Nat Commun, 2024, 15(1):6076. doi:10.1038/s41467-024-50063-z. |
[36] |
Roy S, Ghatak D, Das P, et al. ESX secretion system: The gatekeepers of mycobacterial survivability and pathogenesis. Eur J Microbiol Immunol (Bp), 2020, 10(4):202-209. doi:10.1556/1886.2020.00028.
URL pmid: 33174865 |
[37] |
McCaffrey EF, Donato M, Keren L, et al. Author Correction: The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(5):814. doi:10.1038/s41590-022-01178-2.
URL pmid: 35277696 |
[38] | Zheng W, Chang IC, Limberis J, et al. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. PLoS Pathog, 2024, 20(5):e1012205. doi:10.1371/journal.ppat.1012205. |
[39] | García-Bengoa M, Meurer M, Goethe R, et al. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol, 2023, 14:983299. doi:10.3389/fmicb.2023.983299. |
[40] | Liu S, Guan L, Peng C, et al. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe, 2023, 31(11):1820-1836. e1810. doi:10.1016/j.chom.2023.09.010. |
[41] | Zhai W, Wu F, Zhang Y, et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 2019, 20(2):340. doi:10.3390/ijms20020340. |
[42] |
Antonio N, Bønnelykke-Behrndtz ML, Ward LC, et al. The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J, 2015, 34(17):2219-2236. doi:10.15252/embj.201490147.
URL pmid: 26136213 |
[43] |
Liu Y, Gu Y, Han Y, et al. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer Cell, 2016, 30(2):243-256. doi:10.1016/j.ccell.2016.06.021.
URL pmid: 27505671 |
[44] | Wang Z, Yang C, Li L, et al. Tumor-derived HMGB1 induces CD62Ldim neutrophil polarization and promotes lung metastasis in triple-negative breast cancer. Oncogenesis, 2020, 9(9):82. doi:10.1038/s41389-020-00267-x. |
[45] | Bohrer AC, Castro E, Hu Z, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resis-tance in mice. J Exp Med, 2021, 218(10):e20210469. doi:10.1084/jem.20210469. |
[46] | Salina EG, Makarov V. Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms, 2022, 10(12):2334. doi:10.3390/microorganisms10122334. |
[47] | Xie L, Fang J, Yu J, et al. The role of CD4+ T cells in tumor and chronic viral immune responses. MedComm, 2023, 4(5):e390. doi:10.1002/mco2.390. |
[48] | Gern BH, Adams KN, Plumlee CR, et al. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe, 2021, 29(4):594-606.e6. doi:10.1016/j.chom.2021.02.005. |
[49] | Cheng H, Ji Z, Wang Y, et al. Mycobacterium tuberculosis produces d-serine under hypoxia to limit CD8+ T cell-dependent immunity in mice. Nat Microbiol, 2024, 9(7):1856-1872. doi:10.1038/s41564-024-01701-1. |
[50] | Ankley L, Thomas S, Olive AJ, et al. Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun, 2020, 88(7):e00916-19. doi:10.1128/IAI.00916-19. |
[51] |
Portal-Celhay C, Tufariello JM, Srivastava S, et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat Microbiol, 2016, 2:16232. doi:10.1038/nmicrobiol.2016.232.
URL pmid: 27918526 |
[52] | Carpenter SM, Nunes-Alves C, Booty MG, et al. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis. PLoS Pathog, 2016, 12(1):e1005380. doi:10.1371/journal.ppat.1005380. |
[53] |
Gallegos AM, Xiong H, Leiner IM, et al. Control of T cell antigen reactivity via programmed TCR downregulation. Nat Immunol, 2016, 17(4):379-386. doi:10.1038/ni.3386.
URL pmid: 26901151 |
[54] |
Jasenosky LD, Scriba TJ, Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev, 2015, 264(1):74-87. doi:10.1111/imr.12274.
URL pmid: 25703553 |
[55] | Athman JJ, Sande OJ, Groft SG, et al. Mycobacterium tuberculosis Membrane Vesicles Inhibit T Cell Activation. J Immunol, 2017, 198(5):2028-2037. doi:10.4049/jimmunol.1601199. |
[56] | Liu R, Zhao Y, Su S, et al. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett, 2024, 591:216899. doi:10.1016/j.canlet.2024.216899. |
[57] |
Flores-Guzmán F, Utikal J, Umansky V. Dormant tumor cells interact with memory CD8+ T cells in RET transgenic mouse melanoma model. Cancer Lett, 2020, 474:74-81. doi:10.1016/j.canlet.2020.01.016.
URL pmid: 31962142 |
[58] |
Goddard ET, Linde MH, Srivastava S, et al. Immune evasion of dormant disseminated tumor cells is due to their scarcity and can be overcome by T cell immunotherapies. Cancer Cell, 2024, 42(1):119-134.e112. doi:10.1016/j.ccell.2023.12.011.
URL pmid: 38194912 |
[59] | Tallón de Lara P, Castañón H, Vermeer M, et al. CD39+PD-1+CD8+ T cells mediate metastatic dormancy in breast cancer. Nat Commun, 2021, 12(1):769. doi:10.1038/s41467-021-21045-2. |
[60] | Giarratana AO, Prendergast CM, Salvatore MM, et al. TGF-β signaling: critical nexus of fibrogenesis and cancer. Transl Med, 2024, 22(1):594. doi:10.1186/s12967-024-05411-4. |
[61] | Porter JC, Ganeshan B, Win T, et al. 18FDG PET/CT Signal Correlates with Neoangiogenesis Markers in Patients with Fibrotic Interstitial Lung Disease Who Underwent Lung Biopsy: Implication for the Use of PET/CT in Diffuse Lung Diseases. Nucl Med, 2024, 65(4):617-622. doi:10.2967/jnumed.123.266445. |
[62] | Teo AKJ, MacLean EL, Fox GJ. Subclinical tuberculosis: a meta-analysis of prevalence and scoping review of definitions, prevalence and clinical characteristics. Eur Respir Rev, 2024, 33(172):230208. doi:10.1183/16000617.0208-2023. |
[63] | Jarzebska N, Karetnikova ES, Markov AG, et al. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne), 2021, 7:585756. doi:10.3389/fmed.2020.585756. |
[64] | Maranchick NF, Kwara A, Peloquin CA. Clinical considerations and pharmacokinetic interactions between HIV and tuberculosis therapeutics. Expert Rev Clin Pharmacol, 2024, 17(7):537-547. doi:10.1080/17512433.2024.2317954. |
[65] | Park J, Hsueh PC, Li Z, et al. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity, 2023, 56(1):32-42. doi:10.1016/j.immuni.2022.12.008. |
[66] |
Lafta HA, AbdulHussein AH, Al-Shalah SAJ, et al. Tumor-associated Macrophages (TAMs) in Cancer Resistance; Modulation by Natural Products. Curr Top Med Chem, 2023, 23(12):1104-1122. doi:10.2174/1568026623666230201145909.
URL pmid: 36722486 |
[67] | Wang F, Yang M, Luo W, et al. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. Natl Cancer Cent, 2022, 2(4):243-262. doi:10.1016/j.jncc.2022.10.002. |
[68] | Wu Q, Liu Z, Gao Z, et al. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8+ T-cell-dependent antitumor immunity. Theranostics, 2023, 13(4):1381-1400. doi:10.7150/thno.82182. |
[69] | Lacher SB, Dörr J, de Almeida GP, et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells. Nature, 2024, 629(8011):417-425. doi:10.1038/s41586-024-07254-x. |
[70] | Fang W, Zhou T, Shi H, et al. Progranulin induces immune escape in breast cancer via up-regulating PD-L 1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion. J Exp Clin Cancer Res, 2021, 40(1):4. doi:10.1186/s13046-020-01786-6. |
[71] | Qin R, Zhao C, Wang CJ, et al. Tryptophan potentiates CD8+T cells against cancer cells by TRIP 12 tryptophanylation and surface PD-1 downregulation. J Immunother Cancer, 2021, 9(7):e002840. doi:10.1136/jitc-2021-002840. |
[72] | Cardona PJ. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm Infecc Microbiol Clin (Engl Ed), 2018, 36(1):38-46. doi:10.1016/j.eimc.2017.10.015. |
[73] | Jang HJ, Lee HS, Yu W, et al. Therapeutic Targeting of Macrophage Plasticity Remodels the Tumor-Immune Microenvironment. Cancer Res, 2022, 82(14):2593-2609. doi:10.1158/0008-5472.CAN-21-3506. |
[74] | Soldevilla P, Vilaplana C, Cardona PJ. Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens, 2022, 12(1):49. doi:10.3390/pathogens12010049. |
[75] | Hunter L, Ruedas-Torres I, Agulló-Ros I, et al. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci, 2023, 10:1264833. doi:10.3389/fvets.2023.1264833. |
[76] |
Bhatt M, Kant S, Bhaskar R. Pulmonary tuberculosis as differential diagnosis of lung cancer. South Asian J Cancer, 2012, 1(1):36-42. doi:10.4103/2278-330X.96507.
URL pmid: 24455507 |
[77] | Shu CC, Chang SC, Lai YC, et al. Factors for the Early Revision of Misdiagnosed Tuberculosis to Lung Cancer: A Multicenter Study in A Tuberculosis-Prevalent Area. J Clin Med, 2019, 8(5):700. doi:10.3390/jcm8050700. |
[78] | 温立旻, 侯代伦. 肺结核合并肺癌影像学评估方法现状及进展. 中国防痨杂志, 2023, 45(6): 620-624. doi:10.19982/j.issn.1000-6621.20230045. |
[79] | Zeng L Ma, Qu M, et al. Immunogenicity and protective efficacy of Ag85A and truncation of PstS 1 fusion protein vaccines against tuberculosis. Heliyon, 2024, 10(5):e27034. doi:10.1016/j.heliyon.2024.e27034. |
[80] | 赵爱华, 徐苗, 郑素华, 等. 针对世界卫生组织对卡介苗两次文件立场观点差异的探讨. 中国防痨杂志, 2016, 38(2):87-89. doi:10.3969/j.issn.1000-6621.2016.02.002. |
[81] | Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788):95-102. doi:10.1038/s41586-019-1817-8. |
[82] |
Lamm DL, Morales A. A BCG success story: From prevention of tuberculosis to optimal bladder cancer treatment. Vaccine, 2021, 39(50):7308-7318. doi:10.1016/j.vaccine.2021.08.026.
URL pmid: 34417051 |
[83] | Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, et al. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines(Basel), 2021, 9(5):439. doi:10.3390/vaccines9050439. |
[84] |
Jallad S, Thomas P, Newport MJ, et al. Baseline Cytokine Profiles of Tuberculin-Specific CD4+ T Cells in Non-Muscle-Invasive Bladder Cancer May Predict Outcomes of BCG Immunotherapy. Cancer Immunol Res, 2018, 6(10):1212-1219. doi:10.1158/2326-6066.CIR-18-0046.
URL pmid: 30120103 |
[85] |
Delahaye JL, Gern BH, Cohen SB, et al. Cutting Edge: Bacillus Calmette-Guérin-Induced T Cells Shape Mycobacterium tuberculosis Infection before Reducing the Bacterial Burden. J Immunol, 2019, 203(4):807-812. doi:10.4049/jimmunol.1900108.
URL pmid: 31308091 |
[86] | 周奉, 李同心, 杨松, 等. 结核病短程治疗方案的研究进展. 中国防痨杂志, 2023, 5(3):311-317. doi:10.19982/j.issn.1000-6621.20220447. |
[87] | Pi J, Chen D, Wang J, et al. Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy. Pharmacol Res, 2024, 208:107379. doi:10.1016/j.phrs.2024.107379. |
[88] |
Gap-Gaupool B, Glenn SM, Milburn E, et al. Nitric oxide induces the distinct invisibility phenotype of Mycobacterium tuberculosis. Commun Biol, 2024, 7(1):1206. doi:10.1038/s42003-024-06912-0.
URL pmid: 39342050 |
[89] | Rao Muvva J, Ahmed S, Rekha RS, et al. Immunomodulatory Agents Combat Multidrug-Resistant Tuberculosis by Improving Antimicrobial Immunity. Infect Dis, 2021, 224(2):332-344. doi:10.1093/infdis/jiab100. |
[90] |
Campos PC, Gomes MTR, Marinho FAV, et al. Brucella abortus nitric oxide metabolite regulates inflammasome activation and IL-1β secretion in murine macrophages. Eur J Immunol, 2019, 49(7):1023-1037. doi:10.1002/eji.201848016.
URL pmid: 30919410 |
[91] | Nafiz TN, Sankar P, Mishra LK, et al. Differential requirement of formyl peptide receptor 1 in macrophages and neutrophils in the host defense against Mycobacterium tuberculosis Infection. Sci Rep, 2024, 14(1):23595. doi:10.1038/s41598-024-71180-1. |
[92] |
Miranda KM, Ridnour LA, McGinity CL, et al. Nitric Oxide and Cancer: When to Give and When to Take Away?. Inorg Chem, 2021, 60(21):15941-15947. doi:10.1021/acs.inorgchem.1c02434.
URL pmid: 34694129 |
[93] | Mintz J, Vedenko A, Rosete O, et al. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines, 2021, 9(2):94. doi:10.3390/vaccines9020094. |
[94] | Gobelli D, Serrano-Lorenzo P, Esteban-Amo MJ, et al. The mitochondrial succinate dehydrogenase complex controls the STAT3-IL-10 pathway in inflammatory macrophages. Science, 2023, 26(8):107473. doi:10.1016/j.isci.2023.107473. |
[95] |
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018, 15(4):234-248. doi:10.1038/nrclinonc.2018.8.
URL pmid: 29405201 |
[96] | Emam AM, Dahal A, Singh SS, et al. Quinazoline-tethered hydrazone: A versatile scaffold toward dual anti-TB and EGFR inhibition activities in NSCLC. Arch Pharm (Weinheim), 2021, 345(12):e2100281. doi:10.1002/ardp.202100281. |
[97] | Ye MF, Su S, Huang ZH, et al. Efficacy and safety of concurrent anti-tuberculosis treatment and chemotherapy in lung cancer patients with co-existent tuberculosis. Ann Transl Med, 2020, 8(18):1143. doi:10.21037/atm-20-5964. |
[98] |
Chai M, Shi Q. The effect of anti-cancer and anti-tuberculosis treatments in lung cancer patients with active tuberculosis: a retrospective analysis. BMC Cancer, 2020, 20(1):1121. doi:10.1186/s12885-020-07622-6.
URL pmid: 33213414 |
[99] |
Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol, 2021, 16:223-249. doi:10.1146/annurev-pathol-042020-042741.
URL pmid: 33197221 |
[100] | Langan EA, Graetz V, Allerheiligen J, et al. Immune checkpoint inhibitors and tuberculosis: an old disease in a new context. Lancet Oncol, 2020, 21(1): e55-e65. doi:10.1016/S1470- 2045(19)30674-6. |
[101] | Lin C, Xu G, Gao S, et al. Tuberculosis infection following immune checkpoint inhibitor treatment for advanced cancer: a case report and literature review. Front Immunol, 2023, 14:1162190. doi:10.3389/fimmu.2023.1162190. |
[102] | Chen HW, Kuo YW, Chen CY, et al. Increased Tuberculosis Reactivation Risk in Patients Receiving Immune Checkpoint Inhibitor-Based Therapy. Oncologist, 2024, 29(4):e498-e506. doi:10.1093/oncolo/oyad340. |
[103] |
Zaemes J, Kim C. Immune checkpoint inhibitor use and tuberculosis: a systematic review of the literature. Eur J Cancer, 2020, 132:168-175. doi:10.1016/j.ejca.2020.03.015.
URL pmid: 32375103 |
[104] |
Sirgiovanni M, Hinterleitner C, Horger M, et al. Long-term remission of small cell lung cancer after reactivation of tuberculosis following immune-checkpoint blockade: A case report. Thoracic Cancer, 2021, 12(5):699-702. doi:10.1111/1759-7714.13821.
URL pmid: 33458956 |
[105] | Doz-Deblauwe E, Bounab B, Carreras F, et al. Dual neutrophil subsets exacerbate or suppress inflammation in tuberculosis via IL-1β or PD-L1. Life Sci Alliance, 2024, 7(7):e202402623. doi:10.26508/lsa.202402623. |
[106] | Yu Z, Xu C, Song B, et al. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. Transl Med, 2023, 21(1):708. doi:10.1186/s12967-023-04554-0. |
[107] | 廉娟雯, 许家玲, 华涛, 等. 恶性肿瘤继发结核病患者的临床特征及相关因素分析. 中国防痨杂志, 2019, (3): 254-259. doi:10.3969/j.issn.1000-6621.2019.03.003. |
[1] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[2] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[3] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[4] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[5] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[6] | 石红雨, 张国良, 肖国辉. 单细胞转录组测序技术在结核病研究中的应用[J]. 中国防痨杂志, 2025, 47(3): 362-368. |
[7] | 黄咪孙, 武娅宁, 李桂莲, 刘海灿. 结核分枝杆菌富集技术的研究进展[J]. 中国防痨杂志, 2025, 47(3): 369-373. |
[8] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[9] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[10] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[11] | 张国钦, 曲婷, 孟庆琳, 周林, 刘二勇. 我国结核病合并HIV/AIDS双重感染防治策略的实施进展[J]. 中国防痨杂志, 2025, 47(1): 12-17. |
[12] | 孙丹雨辰, 刘宇红. 老年人群中开展结核病主动发现的研究进展[J]. 中国防痨杂志, 2025, 47(1): 96-101. |
[13] | 付宝慧, 张静. 冬虫夏草菌联合抗结核治疗肺结核的效果观察[J]. 中国防痨杂志, 2024, 46(S2): 52-54. |
[14] | 余翔, 王雪梅. 卷曲霉素联合左氧氟沙星治疗复治涂阳肺结核的疗效[J]. 中国防痨杂志, 2024, 46(S2): 104-105. |
[15] | 韦忠灵, 李志峰, 凌学敏, 蒙夏艳, 杨巧妙, 黄小霞, 何华伟. 支气管镜综合介入治疗对中央气道狭窄型支气管结核患者肺功能和免疫功能影响的观察[J]. 中国防痨杂志, 2024, 46(S2): 213-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||