中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (12): 1566-1572.doi: 10.19982/j.issn.1000-6621.20240312
收稿日期:
2024-07-29
出版日期:
2024-12-10
发布日期:
2024-12-03
通信作者:
张忠法,Email:zzf235@163.com
基金资助:
Received:
2024-07-29
Online:
2024-12-10
Published:
2024-12-03
Contact:
Zhang zhongfa,Email: zzf235@163.com
Supported by:
摘要:
结核病是中国面临的重要公共卫生问题之一,肺结核是其最常见表现形式。近年来,随着对肺结核认识的深入及分离培养技术的发展,肺结核并发其他病原体感染的检出率不断增高。混合感染其他病原体是肺结核的重要并发症,与结核分枝杆菌的侵袭性和耐药性密切相关。然而,混合感染的病原体种类复杂,目前,仍缺乏足够的认识,是临床抗结核治疗中的难点。笔者对近年来肺结核混合感染其他病原体的相关研究进行综述,对其他呼吸道致病细菌、真菌、病毒、非结核分枝杆菌、人类免疫缺陷病毒等几种常见的混合感染病原体类型进行重点讨论,为肺结核混合感染其他病原体的临床诊疗提供参考。
中图分类号:
何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. doi: 10.19982/j.issn.1000-6621.20240312
He Jing, Zhang Zhongfa. Research progress on mixed infection in pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1566-1572. doi: 10.19982/j.issn.1000-6621.20240312
表1
各国结核分枝杆菌混合细菌感染的病原学特征
研究者 | 国家 | 菌株数量 | 优势菌种及其所占比例 |
---|---|---|---|
Langbang等[ | 印度 | 50 | 金黄色葡萄球菌(32%,16/50) 铜绿假单胞菌(16%,8/50) |
Udeani等[ | 尼日利亚 | 119 | 金黄色葡萄球菌(40.3%,48/119) 化脓性链球菌(32.8%,39/119) |
Iliyasu等[ | 尼日利亚 | 141 | 肺炎链球菌(44.7%,63/141) 大肠埃希菌(18.4%,26/141) |
Attia等[ | 柬埔寨 | 13 | 肺炎克雷伯杆菌(46%,6/13) 铜绿假单胞菌(23%,3/13) |
王东萍等[ | 中国 | 110 | 肺炎克雷伯杆菌(13.6%,15/110) 鲍曼不动杆菌(11.8%,13/110) |
李红艳等[ | 中国 | 847 | 铜绿假单胞菌(33.2%,281/847) 肺炎克雷伯杆菌(22.6%,191/847) |
杨丽梅等[ | 中国 | 413 | 铜绿假单胞菌(22.3%,92/413) 肺炎克雷伯杆菌(14.8%,61/413) |
Aldriwesh等[ | 沙特阿拉伯 | 84 | 铜绿假单胞菌(36.9%,31/84) 肺炎克雷伯杆菌(26.2%,22/84) |
陈影影等[ | 中国 | 161 | 肺炎克雷伯杆菌(26.1%,42/161) 阴沟肠杆菌(18.6%,30/161) |
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | Hong BY, Maulén NP, Adami AJ, et al. Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clin Microbiol Rev, 2016, 29(4):915-926. doi:10.1128/CMR.00096-15. |
[3] |
Regmi RS, Khadka S, Sapkota S, et al. Bacterial etiology of sputum from tuberculosis suspected patients and antibiogram of the isolates. BMC Res Notes, 2020, 13(1):520. doi:10.1186/s13104-020-05369-8.
pmid: 33172496 |
[4] |
Shimazaki T, Taniguchi T, Saludar NRD, et al. Bacterial co-infection and early mortality among pulmonary tuberculosis patients in Manila, The Philippines. Int J Tuberc Lung Dis, 2018, 22(1):65-72. doi:10.5588/ijtld.17.0389.
pmid: 29297428 |
[5] | Langbang A, Deka N, Rahman H, et al. A Study on Bacterial Pathogens causing Secondary Infections in Patients Suffering from Tuberculosis and their Pattern of Antibiotic Sensitivity. Inter J Current Microbiol App Sci, 2016, 5:197-203. doi:10.20546/ijcmas.2016.508.021. |
[6] | Udeani TK, Moses J, Uzoechina A, et al. Microbial aetiologic agents associated with pneumonia in immunocompromised hosts. Afr J Infect Dis, 2010, 4(1):1-6. doi:10.4314/ajid.v4i1.55084. |
[7] | Iliyasu G, Mohammad AB, Yakasai AM, et al. Gram-negative bacilli are a major cause of secondary pneumonia in patients with pulmonary tuberculosis: evidence from a cross-sectional study in a tertiary hospital in Nigeria. Trans R Soc Trop Med Hyg, 2018, 112(5):252-254. doi:10.1093/trstmh/try044. |
[8] |
Attia EF, Pho Y, Nhem S, et al. Tuberculosis and other bacterial co-infection in Cambodia: a single center retrospective cross-sectional study. BMC Pulm Med, 2019, 19(1):60. doi:10.1186/s12890-019-0828-4.
pmid: 30866909 |
[9] | 刘冠, 赵雁林. 肺结核患者呼吸道菌群研究简述. 中国防痨杂志, 2010, 32(5):293-295. |
[10] | 王东萍, 杨静, 王庆. 肺结核合并肺部感染病原菌分布及耐药性分析. 临床肺科杂志, 2012, 17(3):469-470. doi:10.3969/j.issn.1009-6663.2012.03.039. |
[11] | 李红艳, 邹盛华, 张丽水, 等. 肺结核合并肺部感染的病原菌分布及药敏分析. 临床肺科杂志, 2011, 16(11):1717-1720. doi:10.3969/j.issn.1009-6663.2011.11.030. |
[12] | 杨丽梅, 勾秀丽, 郭艳玲, 等. 肺结核患者合并肺部感染的病原菌分布及耐药性分析. 国际检验医学杂志, 2012, 33(10):1201-1203. doi:10.3969/j.issn.1673-4130.2012.10.025. |
[13] | Hamde F, Chala B, Bekele M, et al. Isolation and Antimicrobial Resistance Patterns of Bacterial Pathogens from Community-Acquired Pneumonia at Adama Hospital Medical College, Adama, Ethiopia. J Trop Med, 2024,2024:8710163. doi:10.1155/2024/8710163. |
[14] | 朱浩, 胡君, 张华芳, 等. 肺结核患者肺部感染的病原菌分布与耐药性分析. 中华医院感染学杂志, 2015(1):51-53. doi:10.11816/cn.ni.2015-142964. |
[15] | 王敏媛, 王彪, 仵倩红. 某院2019年—2022年肺结核合并下呼吸道感染患者中革兰阴性菌的检出情况及其耐药变迁分析. 抗感染药学, 2023, 20(7):755-762. doi:10.13493/j.issn.1672-7878.2023.07-0022. |
[16] |
Aldriwesh MG, Alaqeel RA, Mashraqi AM, et al. Coinfection of pulmonary tuberculosis with other lower respiratory tract infections: A retrospective cross-sectional study. Ann Thorac Med, 2022, 17(4):229-236. doi:10.4103/atm.atm_200_22.
pmid: 36387752 |
[17] | 陈影影, 施旭东, 黄菁, 等. 肺结核患者CD4+T淋巴细胞计数水平与下呼吸道病原菌感染类型及耐药性的关系. 临床检验杂志, 2023, 41(11):827-831. doi:10.13602/j.cnki.jcls.2023.11.06. |
[18] |
Nachbagauer R, Choi A, Hirsh A, et al. Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. Nat Immunol, 2017, 18(4):464-473. doi:10.1038/ni.3684.
pmid: 28192418 |
[19] | Walaza S, Cohen C, Tempia S, et al. Influenza and tuberculosis co-infection: A systematic review. Influenza Other Respir Viruses, 2020, 14(1):77-91. doi:10.1111/irv.12670. |
[20] |
Volkert M, Pierce C, Horsfall FL, et al. The enhancing effect of concurrent infection with pneumotropic viruse on pulmonary tubercuulosis in mice. J Exp Med, 1947, 86(3):203-214. doi:10.1084/jem.86.3.203.
pmid: 19871671 |
[21] | Walaza S, Tempia S, Dawood H, et al. Influenza virus infection is associated with increased risk of death amongst patients hospitalized with confirmed pulmonary tuberculosis in South Africa,2010-2011. BMC Infect Dis, 2015,15:26. doi:10.1186/s12879-015-0746-x. |
[22] | Puvanalingam A, Rajendiran C, Sivasubramanian K, et al. Case series study of the clinical profile of H1N1 swine flu influenza. J Assoc Physicians India, 2011,59:14-16, 18. |
[23] |
Abadom TR, Smith AD, Tempia S, et al. Risk factors associated with hospitalisation for influenza-associated severe acute respiratory illness in South Africa: A case-population study. Vaccine, 2016, 34(46):5649-5655. doi:10.1016/j.vaccine.2016.09.011.
pmid: 27720448 |
[24] | Walaza S, Tempia S, Dawood H, et al. The Impact of Influenza and Tuberculosis Interaction on Mortality Among Individuals Aged ≥15 Years Hospitalized With Severe Respiratory Illness in South Africa, 2010-2016. Open Forum Infect Dis, 2019, 6(3):ofz20. doi:10.1093/ofid/ofz020. |
[25] | de Paus RA, van Crevel R, van Beek R, et al. The influence of influenza virus infections on the development of tuberculosis. Tuberculosis (Edinb), 2013, 93(3):338-342. doi:10.1016/j.tube.2013.02.006. |
[26] | Roth S, Whitehead S, Thamthitiwat S, et al. Concurrent influenza virus infection and tuberculosis in patients hospitalized with respiratory illness in Thailand. Influenza Other Respir Viruses, 2013, 7(3):244-248. doi:10.1111/j.1750-2659.2012.00413.x. |
[27] | Walaza S, Cohen C, Nanoo A, et al. Excess Mortality Associated with Influenza among Tuberculosis Deaths in South Africa, 1999—2009. PLoS One, 2015, 10(6):e129173. doi:10.1371/journal.pone.0129173. |
[28] | 张福杰, 王卓, 王全红, 等. 新型冠状病毒感染者抗病毒治疗专家共识. 中华临床感染病杂志, 2023, 16(1):10-20. doi:10.3760/cma.j.issn.1674-2397.2023.01.002. |
[29] | Riou C, du Bruyn E, Stek C, et al. Relationship of SARS-CoV-2-specific CD 4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest, 2021, 131(12). doi:10.1172/JCI149125. |
[30] | Booysen P, Wilkinson KA, Sheerin D, et al. Immune interaction between SARS-CoV-2 and Mycobacterium tuberculosis. Front Immunol, 2023,14:1254206. doi:10.3389/fimmu.2023.1254206. |
[31] | Osman NM, Gomaa AA, Sayed NM, et al. Microarray detection of fungal infection in pulmonary tuberculosis. Egypt J Chest Dis Tuberc, 2013, 62(1):151-157. doi:10.1016/j.ejcdt.2013.02.002. |
[32] | Muni S, Rajpal K, Kumar R, et al. Identification of Fungal Isolates in Patients With Pulmonary Tuberculosis Treated at a Tertiary Care Hospital. Cureus, 2023, 15(4):e37664. doi:10.7759/cureus.37664. |
[33] | Hosseini M, Shakerimoghaddam A, Ghazalibina M, et al. Aspergillus coinfection among patients with pulmonary tuberculosis in Asia and Africa countries; A systematic review and meta-analysis of cross-sectional studies. Microb Pathog, 2020,141:104018. doi:10.1016/j.micpath.2020.104018. |
[34] | Astekar M, Bhatiya PS, Sowmya GV. Prevalence and characterization of opportunistic candidal infections among patients with pulmonary tuberculosis. J Oral Maxillofac Pathol, 2016, 20(2):183-189. doi:10.4103/0973-029X.185913. |
[35] |
Soedarsono S, Prasetiyo YD, Mertaniasih M. Fungal isolates findings of sputum samples in new and previously treated cases of pulmonary tuberculosis in dr. soetomo hospital surabaya, Indonesia. Int J Mycobacteriol, 2020, 9(2):190-194. doi:10.4103/ijmy.ijmy_1_20.
pmid: 32474542 |
[36] |
Yan H, Guo L, Pang Y, et al. Clinical characteristics and predictive model of pulmonary tuberculosis patients with pulmonary fungal coinfection. BMC Pulm Med, 2023, 23(1):56. doi:10.1186/s12890-023-02344-4.
pmid: 36750804 |
[37] | 周丹, 黄胜, 胡雅萍, 等. 肺结核并发真菌感染CT影像特征及miR-29a-3p、miR-223-3p、IFN-γ、IL-23R水平. 中华医院感染学杂志, 2024, 34(19):2947-2951. doi:10.11816/cn.ni.2024-240175. |
[38] | Tarashi S, Fateh A, Mirsaeidi M, et al. Mixed infections in tuberculosis: The missing part in a puzzle. Tuberculosis (Edinb), 2017, 107:168-174. doi:10.1016/j.tube.2017.09.004. |
[39] | Gan M, Liu Q, Yang C, et al. Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis. PLoS One, 2016, 11(7):e159029. doi:10.1371/journal.pone.0159029. |
[40] |
Kargarpour Kamakoli M, Farmanfarmaei G, Masoumi M, et al. Prediction of the hidden genotype of mixed infection strains in Iranian tuberculosis patients. Int J Infect Dis, 2020, 95:22-27. doi:10.1016/j.ijid.2020.03.056.
pmid: 32251801 |
[41] | Drain PK, Bajema KL, Dowdy D, et al. Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev, 2018, 31(4): e00021-18. doi:10.1128/CMR.00021-18. |
[42] |
Micheni L N, Deyno S, Bazira J. Mycobacterium tuberculosis mixed infections and drug resistance in sub-Saharan Africa: a systematic review. Afr Health Sci, 2022, 22(1):560-572. doi:10.4314/ahs.v22i1.65.
pmid: 36032443 |
[43] | Lapa S, Kuzmin A, Сhernousova L, et al. Spoligotyping of the Mycobacterium tuberculosis complex using on-Chip PCR. J Appl Microbiol, 2022, 16:lxac046. doi:10.1093/jambio/lxac046. |
[44] | Cave MD, Eisenach KD, Mcdermott PF, et al. IS6110: Conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes, 1991, 5(1):73-80. doi:10.1016/0890-8508(91)90040-Q. |
[45] | Tazi L, Reintjes R, Bañuls A. Tuberculosis transmission in a high incidence area: A retrospective molecular epidemiological study of Mycobacterium tuberculosis in Casablanca, Morocco. Infect Genet Evol, 2007, 7(5):636-644. doi:10.1016/j.meegid.2007.06.005. |
[46] | Mazars E, Lesjean S, Banuls AL, et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A, 2001, 98(4):1901-1906. doi:10.1073/pnas.98.4.1901. |
[47] |
Pang Y, Zhou Y, Wang S, et al. Prevalence and risk factors of mixed Mycobacterium tuberculosis complex infections in China. J Infect, 2015, 71(2):231-237. doi:10.1016/j.jinf.2015.03.012.
pmid: 25936744 |
[48] | Kargarpour Kamakoli M, Sadegh HR, Farmanfarmaei G, et al. Evaluation of the impact of polyclonal infection and heteroresistance on treatment of tuberculosis patients. Sci Rep, 2017,7:41410. doi:10.1038/srep41410. |
[49] | Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017, 72(Suppl 2):ii1-ii64. doi:10.1136/thoraxjnl-2017-210927. |
[50] | Huang M, Tan Y, Zhang X, et al. Effect of Mixed Infections with Mycobacterium tuberculosis and Nontuberculous Mycobacteria on Diagnosis of Multidrug-Resistant Tuberculosis: A Retrospective Multicentre Study in China. Infect Drug Resist, 2022, 15:157-166. doi:10.2147/IDR.S341817. |
[51] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[52] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis, 2020, 71(4):905-913. doi:10.1093/cid/ciaa1125.
pmid: 32797222 |
[53] | Orujyan D, Narinyan W, Rangarajan S, et al. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines (Basel), 2022, 10(3):390. doi:10.3390/vaccines10030390. |
[54] | Komine-Aizawa S, Mizuno S, Matsuo K, et al. Recombinant BCG-Prime and DNA-Boost Immunization Confers Mice with Enhanced Protection against Mycobacterium kansasii. Vaccines (Basel), 2021, 9(11):1260. doi:10.3390/vaccines9111260. |
[55] | Bell L, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol, 2018, 16(2):80-90. doi:10.1038/nrmicro.2017.128. |
[56] |
Tamuzi JL, Ayele BT, Shumba CS, et al. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect Dis, 2020, 20(1):744. doi:10.1186/s12879-020-05450-4.
pmid: 33036570 |
[57] | Prommongkol B, Putcharoen O, Patamatamkul S. Prevalence and incidence rates of tuberculosis in people with HIV during the coronavirus 2019 pandemic: a single center retrospective analysis. HIV Res Clin Pract, 2024, 25(1):2348935. doi:org/10.1080/25787489.2024.2348935. |
[58] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 6: Tuberculosis and comorbidities. Geneva: World Health Organization, 2024. |
[59] | World Health Organization. Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring. Geneva:World Health Organization, 2021. |
[60] | Khan PY, Yates TA, Osman M, et al. Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet Infect Dis, 2019, 19(3):e77-e88. doi:0.1016/S1473-3099(18)30537-1. |
[61] |
Sultana ZZ, Hoque FU, Beyene J, et al. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis, 2021, 21(1):51. doi:10.1186/s12879-020-05749-2.
pmid: 33430786 |
[62] | Le X, Qian X, Liu L, et al. Trends in and Risk Factors for Drug Resistance in Mycobacterium tuberculosis in HIV-Infected Patients. Viruses, 2024, 16(4):627. doi:10.3390/v16040627. |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[3] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[4] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[5] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[6] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[7] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[8] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[9] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[10] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[11] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
[12] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
[13] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
[14] | 王宇津, 初乃惠, 聂文娟. 康替唑胺治疗结核病的研究进展[J]. 中国防痨杂志, 2024, 46(11): 1395-1399. |
[15] | 陈振华, 郭婧玮, 王珏, 胡培磊, 易松林, 刘怡, 谭云洪. 基于BACTEC MGIT 960培养的结核分枝杆菌与非结核分枝杆菌混合感染检测方法的研究[J]. 中国防痨杂志, 2024, 46(10): 1243-1249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||