中国防痨杂志 ›› 2018, Vol. 40 ›› Issue (2): 149-152.doi: 10.3969/j.issn.1000-6621.2018.02.007
收稿日期:
2018-01-14
出版日期:
2018-02-10
发布日期:
2018-03-14
Xin-chang CHEN,Wen-hong ZHANG()
Received:
2018-01-14
Online:
2018-02-10
Published:
2018-03-14
摘要:
随着技术的发展及成本的降低,全基因组测序已经广泛应用于结核分枝杆菌的各方面研究当中,包括微进化与传播、宏观进化与种系发生、耐药检测等。根据现有研究成果,全基因组测序已经解决了很多传统分子研究方法无法解决的问题,比如鉴定传播链、分辨复发与再感染、解析结核分枝杆菌的进化过程、快速诊断结核病耐药、诊断混合感染等。尽管如此,目前还存在很多问题亟需解决。笔者对全基因组测序技术的研究方向及成果进行回顾,提出其局限性,并展望其应用前景。
陈昕昶,张文宏. 全基因组测序在结核病研究中的应用进展[J]. 中国防痨杂志, 2018, 40(2): 149-152. doi: 10.3969/j.issn.1000-6621.2018.02.007
Xin-chang CHEN,Wen-hong ZHANG. Progress in the application of whole genome sequencing in tuberculosis research[J]. Chinese Journal of Antituberculosis, 2018, 40(2): 149-152. doi: 10.3969/j.issn.1000-6621.2018.02.007
[1] |
Roetzer A, Diel R, Kohl TA , et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med, 2013,10(2):e1001387.
doi: 10.1371/journal.pmed.1001387 URL |
[2] |
Gardy JL, Johnston JC, Ho Sui SJ , et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med, 2011,364(8):730-739.
doi: 10.1056/NEJMoa1003176 URL pmid: 21345102 |
[3] |
Walker TM, Ip CL, Harrell RH , et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis, 2013,13(2):137-146.
doi: 10.1016/S1473-3099(12)70277-3 URL |
[4] | Guerra-Assunção JA, Crampin AC, Houben RM , et al. Large-scale whole genome sequencing of M.tuberculosis provides insights into transmission in a high prevalence area. Elife, 2015,4. |
[5] |
Lee RS, Radomski N, Proulx JF , et al. Reemergence and amplification of tuberculosis in the Canadian arctic. J Infect Dis, 2015,211(12):1905-1914.
doi: 10.1093/infdis/jiv011 URL pmid: 25576599 |
[6] |
Walker TM, Lalor MK, Broda A , et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study. Lancet Respir Med, 2014,2(4):285-292.
doi: 10.1016/S2213-2600(14)70027-X URL |
[7] |
Yang C, Luo T, Shen X , et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retro-spective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017,17(3):275-284.
doi: 10.1016/S1473-3099(16)30418-2 URL |
[8] |
Kato-Maeda M, Ho C, Passarelli B , et al. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One, 2013,8(3):e58235.
doi: 10.1371/journal.pone.0058235 URL |
[9] |
Köser CU, Bryant JM, Becq J , et al. Whole-genome sequencing for rapid susceptibility testing of M.tuberculosis. N Engl J Med, 2013,369(3):290-292.
doi: 10.1056/NEJMc1215305 URL pmid: 23863072 |
[10] |
Brosch R, Gordon SV, Marmiesse M , et al. A new evolu-tionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A, 2002,99(6):3684-3689.
doi: 10.1073/pnas.052548299 URL pmid: 11891304 |
[11] |
Pfyffer GE, Auckenthaler R, van Embden JD , et al. Mycobacterium canettii, the smooth variant of M.tuberculosis, isolated from a Swiss patient exposed in Africa. Emerg Infect Dis, 1998,4(4):631-634.
URL pmid: 9661826 |
[12] |
Supply P, Marceau M, Mangenot S , et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet, 2013,45(2):172-179.
doi: 10.1038/ng.2517 URL |
[13] |
Comas I, Coscolla M, Luo T , et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet, 2013,45(10):1176-1182.
doi: 10.1038/ng.2744 URL |
[14] |
Brites D, Gagneux S . Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev, 2015,264(1):6-24.
doi: 10.1111/imr.2015.264.issue-1 URL |
[15] |
Denkinger CM, Schumacher SG, Boehme CC , et al. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2014,44(2):435-446.
doi: 10.1183/09031936.00007814 URL |
[16] |
Schön T, Miotto P, Köser CU , et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160.
doi: 10.1016/j.cmi.2016.10.022 URL |
[17] |
Farhat MR, Shapiro BJ, Kieser KJ , et al. Genomic analysis identifies targets of convergent positive selection in drug-resis-tant Mycobacterium tuberculosis. Nat Genet, 2013,45(10):1183-1189.
doi: 10.1038/ng.2747 URL |
[18] |
Zhang H, Li D, Zhao L , et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet, 2013,45(10):1255-1260.
doi: 10.1038/ng.2735 URL |
[19] |
Walker TM, Kohl TA, Omar SV , et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015,15(10):1193-1202.
doi: 10.1016/S1473-3099(15)00062-6 URL |
[20] | Shi W, Chen J, Feng J , et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect, 2014,3(8):e58. |
[21] |
Zhang S, Chen J, Shi W , et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect, 2013,2(6):e34.
doi: 10.1038/emi.2013.38 URL |
[22] |
Zhang S, Chen J, Cui P , et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015,70(9):2507-2510.
doi: 10.1093/jac/dkv150 URL |
[23] |
Zhang S, Chen J, Cui P , et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob Agents Chemother, 2016,60(4):2542-2544.
doi: 10.1128/AAC.02941-15 URL pmid: 26810645 |
[24] |
Gu Y, Yu X, Jiang G , et al. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations. Diagn Microbiol Infect Dis, 2016,84(3):207-211.
doi: 10.1016/j.diagmicrobio.2015.10.017 URL |
[25] |
Simons SO, Mulder A, van Ingen J , et al. Role of rpsA gene sequencing in diagnosis of pyrazinamide resistance. J Clin Microbiol, 2013,51(1):382.
doi: 10.1128/JCM.02739-12 URL pmid: 3536190 |
[26] |
Lee RS, Pai M . Real-time sequencing of Mycobacterium tuberculosis: are we there yet. J Clin Microbiol, 2017,55(5):1249-1254.
doi: 10.1128/JCM.00358-17 URL pmid: 28298449 |
[27] |
Votintseva AA, Pankhurst LJ, Anson LW , et al. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol, 2015,53(4):1137-1143.
doi: 10.1128/JCM.03073-14 URL |
[28] |
Bradley P, Gordon NC, Walker TM , et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun, 2015,6:10063.
doi: 10.1038/ncomms10063 URL |
[29] |
Pankhurst LJ Del Ojo Elias C, Votintseva AA , et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med, 2016,4(1):49-58.
doi: 10.1016/S2213-2600(15)00466-X URL |
[30] | Quan TP, Bawa Z, Foster D, et al. Evaluation of whole genome sequencing for Mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line-probe assays and phenotyping. J Clin Microbiol , 2017, pii: JCM. 01480-17. |
[31] | Hatherell H, Colijn C, Stagg HR , et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med, 2016,14:21. |
[32] | Horne DJ, Pinto LM, Arentz M , et al. Diagnostic accuracy and reproducibility of WHO-endorsed phenotypic drug susceptibility testing methods for first-line and second-line antituberculosis drugs. J Clin Microbiol, 2013,51(2):393-401. |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||