中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (8): 801-807.doi: 10.19982/j.issn.1000-6621.20230182
收稿日期:
2023-06-01
出版日期:
2023-08-10
发布日期:
2023-08-09
通信作者:
高谦
E-mail:qiangao@fudan.edu.cn
Bei Cheng, Li Meng, Gao Qian()
Received:
2023-06-01
Online:
2023-08-10
Published:
2023-08-09
Contact:
Gao Qian
E-mail:qiangao@fudan.edu.cn
摘要:
开发便捷、快速、准确的结核病诊断技术是终止结核病的重要一环。现有检测方法存在痰液样本采集困难等问题,而基于血液样本的转录标识物的检测方法有望弥补这些缺陷。本文综述血液转录标识物在结核病诊断中的研究进展及其应用,探讨其局限性与未来发展方向。
中图分类号:
贝呈, 李蒙, 高谦. 基于血液样本的转录标识物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2023, 45(8): 801-807. doi: 10.19982/j.issn.1000-6621.20230182
Bei Cheng, Li Meng, Gao Qian. Research progress on blood transcriptomic biomarkers in the diagnosis of tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(8): 801-807. doi: 10.19982/j.issn.1000-6621.20230182
[1] | World Health Organization.Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] |
Drain PK, Gardiner J, Hannah H, et al. Guidance for Studies Evaluating the Accuracy of Biomarker-Based Nonsputum Tests to Diagnose Tuberculosis. J Infect Dis, 2019, 220(220 Suppl 3): S108-S115. doi:10.1093/infdis/jiz356.
doi: 10.1093/infdis/jiz356 |
[3] |
Getahun H, Harrington M, O’Brien R, et al. Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection or AIDS in resource-constrained settings: informing urgent policy changes. Lancet, 2007, 369(9578): 2042-2049. doi:10.1016/S0140-6736(07)60284-0.
doi: S0140-6736(07)60284-0 pmid: 17574096 |
[4] |
Hong JM, Lee H, Menon NV, et al. Point-of-care diagnostic tests for tuberculosis disease. Sci Transl Med, 2022, 14(639): eabj4124. doi:10.1126/scitranslmed.abj4124.
doi: 10.1126/scitranslmed.abj4124 URL |
[5] |
Kohli M, Schiller I, Dendukuri N, et al. Xpert MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resis-tance. Cochrane Database Syst Rev, 2018, 8(8): CD012768. doi:10.1002/14651858.CD012768.pub2.
doi: 10.1002/14651858.CD012768.pub2 |
[6] | World Health Organization. High priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting, 28-29 April 2014. Geneva: World Health Organization, 2014. |
[7] |
李蒙, 高谦. 结核病自然史的阶段划分及其诊断的现状与展望. 中国防痨杂志, 2021, 43(11): 1125-1131. doi:10.3969/j.issn.1000-6621.2021.11.005.
doi: 10.3969/j.issn.1000-6621.2021.11.005 |
[8] |
Södersten E, Ongarello S, Mantsoki A, et al. Diagnostic Accuracy Study of a Novel Blood-Based Assay for Identification of Tuberculosis in People Living with HIV. J Clin Microbiol, 2021, 59(3): e01643-20. doi:10.1128/JCM.01643-20.
doi: 10.1128/JCM.01643-20 |
[9] |
Singhania A, Wilkinson RJ, Rodrigue M, et al. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol, 2018, 19(11): 1159-1168. doi:10.1038/s41590-018-0225-9.
doi: 10.1038/s41590-018-0225-9 pmid: 30333612 |
[10] |
Wang S, He L, Wu J, et al. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Identifies Diagnostic Biomarkers That Distinguish Active and Latent Tuberculosis. Front Immunol, 2019, 10: 2948. doi:10.3389/fimmu.2019.02948.
doi: 10.3389/fimmu.2019.02948 pmid: 31921195 |
[11] |
Mistry R, Cliff JM, Clayton CL, et al. Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. J Infect Dis, 2007, 195(3): 357-365. doi:10.1086/510397.
doi: 10.1086/510397 pmid: 17205474 |
[12] |
Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med, 2014, 370(18): 1712-1723. doi:10.1056/NEJMoa1303657.
doi: 10.1056/NEJMoa1303657 URL |
[13] |
Duffy FJ, Thompson EG, Scriba TJ, et al. Multinomial modelling of TB/HIV co-infection yields a robust predictive signature and generates hypotheses about the HIV+TB+disease state. PLoS One, 2019, 14(7): e0219322. doi:10.1371/journal.pone.0219322.
doi: 10.1371/journal.pone.0219322 |
[14] |
Gliddon HD, Kaforou M, Alikian M, et al. Identification of Reduced Host Transcriptomic Signatures for Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front Immunol, 2021, 12: 637164. doi:10.3389/fimmu.2021.637164.
doi: 10.3389/fimmu.2021.637164 |
[15] |
Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med, 2013, 10(10): e1001538. doi:10.1371/journal.pmed.1001538.
doi: 10.1371/journal.pmed.1001538 |
[16] |
Penn-Nicholson A, Mbandi SK, Thompson E, et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response. Sci Rep, 2020, 10(1): 8629. doi:10.1038/s41598-020-65043-8.
doi: 10.1038/s41598-020-65043-8 pmid: 32451443 |
[17] |
Singhania A, Verma R, Graham CM, et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun, 2018, 9(1): 2308. doi:10.1038/s41467-018-04579-w.
doi: 10.1038/s41467-018-04579-w pmid: 29921861 |
[18] |
Suliman S, Thompson EG, Sutherland J, et al. Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. Am J Respir Crit Care Med, 2018, 197(9): 1198-1208. doi:10.1164/rccm.201711-2340OC.
doi: 10.1164/rccm.201711-2340OC URL |
[19] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224. doi:10.1016/S2213-2600(16)00048-5.
doi: 10.1016/S2213-2600(16)00048-5 pmid: 26907218 |
[20] |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(10035): 2312-2322. doi:10.1016/S0140-6736(15)01316-1.
doi: S0140-6736(15)01316-1 pmid: 27017310 |
[21] |
Walter ND, Miller MA, Vasquez J, et al. Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: a Case-Control Study with Systematic Cross-Classifier Evaluation. J Clin Microbiol, 2016, 54(2): 274-282. doi:10.1128/JCM.01990-15.
doi: 10.1128/JCM.01990-15 pmid: 26582831 |
[22] |
刘艳华, 王若, 安红娟, 等. FCGR1B基因转录水平检测对活动性结核病诊断的价值研究. 中华结核和呼吸杂志, 2022, 45(4): 373-378. doi:10.3760/cma.j.cn112147-20211213-00878.
doi: 10.3760/cma.j.cn112147-20211213-00878 |
[23] |
Hoang LT, Jain P, Pillay TD, et al. Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. Lancet Infect Dis, 2021, 21(3): 366-375. doi:10.1016/S1473-3099(20)30928-2.
doi: 10.1016/S1473-3099(20)30928-2 pmid: 33508221 |
[24] |
de Araujo LS, Vaas LA, Ribeiro-Alves M, et al. Transcriptomic Biomarkers for Tuberculosis: Evaluation of DOCK9. EPHA4, and NPC2 mRNA Expression in Peripheral Blood. Front Microbiol, 2016, 7: 1586. doi:10.3389/fmicb.2016.01586.
doi: 10.3389/fmicb.2016.01586 |
[25] |
Gao J, Li C, Li W, et al. Increased UBE2L6 regulated by type 1 interferon as potential marker in TB. J Cell Mol Med, 2021, 25(24): 11232-11243. doi:10.1111/jcmm.17046.
doi: 10.1111/jcmm.17046 pmid: 34773365 |
[26] |
Xu Y, Tan Y, Zhang X, et al. Comprehensive identification of immuno-related transcriptional signature for active pulmonary tuberculosis by integrated analysis of array and single cell RNA-seq. J Infect, 2022, 85(5): 534-544. doi:10.1016/j.jinf.2022.08.017.
doi: 10.1016/j.jinf.2022.08.017 URL |
[27] |
Roe J, Venturini C, Gupta RK, et al. Blood Transcriptomic Stratification of Short-term Risk in Contacts of Tuberculosis. Clin Infect Dis, 2020, 70(5): 731-737. doi:10.1093/cid/ciz252.
doi: 10.1093/cid/ciz252 pmid: 30919880 |
[28] |
Murphy TL, Tussiwand R, Murphy KM. Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat Rev Immunol, 2013, 13(7): 499-509. doi:10.1038/nri3470.
doi: 10.1038/nri3470 pmid: 23787991 |
[29] |
Li P, Jiang W, Yu Q, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature, 2017, 551(7680): 378-383. doi:10.1038/nature24467.
doi: 10.1038/nature24467 URL |
[30] |
Patten DA. SCARF1: a multifaceted, yet largely understudied, scavenger receptor. Inflamm Res, 2018, 67(8): 627-632. doi:10.1007/s00011-018-1154-7.
doi: 10.1007/s00011-018-1154-7 pmid: 29725698 |
[31] |
Gjøen JE, Jenum S, Sivakumaran D, et al. Novel transcriptional signatures for sputum-independent diagnostics of tuberculosis in children. Sci Rep, 2017, 7(1): 5839. doi:10.1038/s41598-017-05057-x.
doi: 10.1038/s41598-017-05057-x pmid: 28724962 |
[32] |
Maertzdorf J, McEwen G, Weiner J 3rd, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med, 2016, 8(2): 86-95. doi:10.15252/emmm.201505790.
doi: 10.15252/emmm.201505790 pmid: 26682570 |
[33] |
Qian Z, Lv J, Kelly GT, et al. Expression of nuclear factor, erythroid 2-like 2-mediated genes differentiates tuberculosis. Tuberculosis (Edinb), 2016, 99: 56-62. doi:10.1016/j.tube.2016.04.008.
doi: 10.1016/j.tube.2016.04.008 URL |
[34] |
Chen Y, Wang Q, Lin S, et al. Meta-Analysis of Peripheral Blood Transcriptome Datasets Reveals a Biomarker Panel for Tuberculosis in Patients Infected With HIV . Front Cell Infect Microbiol, 2021, 11: 585919. doi:10.3389/fcimb.2021.585919.
doi: 10.3389/fcimb.2021.585919 URL |
[35] |
Sivakumaran D, Ritz C, Gjøen JE, et al. Host Blood RNA Transcript and Protein Signatures for Sputum-Independent Diagnostics of Tuberculosis in Adults. Front Immunol, 2020, 11: 626049. doi:10.3389/fimmu.2020.626049.
doi: 10.3389/fimmu.2020.626049 URL |
[36] |
Roe JK, Thomas N, Gil E, et al. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. JCI Insight, 2016, 1(16): e87238. doi:10.1172/jci.insight.87238.
doi: 10.1172/jci.insight.87238 |
[37] |
Wang JB, Qiu QZ, Zheng QL, et al. Tumor Immunophenotyping-Derived Signature Identifies Prognosis and Neoadjuvant Immunotherapeutic Responsiveness in Gastric Cancer. Adv Sci (Weinh), 2023, 10(15): e2207417. doi:10.1002/advs.202207417.
doi: 10.1002/advs.202207417 |
[38] |
Elkington P, Tebruegge M, Mansour S. Tuberculosis: An Infection-Initiated Autoimmune Disease? Trends Immunol, 2016, 37(12): 815-818. doi:10.1016/j.it.2016.09.007.
doi: S1471-4906(16)30141-7 pmid: 27773684 |
[39] |
Starshinova A, Malkova A, Kudryavtsev I, et al. Tuberculosis and autoimmunity: Common features. Tuberculosis (Edinb), 2022, 134: 102202. doi:10.1016/j.tube.2022.102202.
doi: 10.1016/j.tube.2022.102202 URL |
[40] |
Maertzdorf J, Weiner J 3rd, Mollenkopf HJ, et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proc Natl Acad Sci U S A, 2012, 109(20): 7853-7858. doi:10.1073/pnas.1121072109.
doi: 10.1073/pnas.1121072109 URL |
[41] |
Del Rosario RCH, Poschmann J, Lim C, et al. Histone acetylome-wide associations in immune cells from individuals with active Mycobacterium tuberculosis infection. Nat Microbiol, 2022, 7(2): 312-326. doi:10.1038/s41564-021-01049-w.
doi: 10.1038/s41564-021-01049-w |
[42] |
Yue H, Hu Z, Hu R, et al. ALDH1A 1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol, 2022, 12: 918778. doi:10.3389/fonc.2022.918778.
doi: 10.3389/fonc.2022.918778 |
[43] |
Hamada Y, Penn-Nicholson A, Krishnan S, et al. Are mRNA based transcriptomic signatures ready for diagnosing tuberculosis in the clinic?-A review of evidence and the technological landscape. EBioMedicine, 2022, 82: 104174. doi:10.1016/j.ebiom.2022.104174.
doi: 10.1016/j.ebiom.2022.104174 URL |
[44] |
Turner CT, Gupta RK, Tsaliki E, et al. Blood transcriptional biomarkers for active pulmonary tuberculosis in a high-burden setting: a prospective, observational, diagnostic accuracy study. Lancet Respir Med, 2020, 8(4): 407-419. doi:10.1016/S2213-2600(19)30469-2.
doi: 10.1016/S2213-2600(19)30469-2 pmid: 32178775 |
[45] |
Sutherland JS, van der Spuy G, Gindeh A, et al. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis, 2022, 74(12): 2136-2141. doi:10.1093/cid/ciab839.
doi: 10.1093/cid/ciab839 URL |
[46] |
Moreira FMF, Verma R, Pereira Dos Santos PC, et al. Blood-based host biomarker diagnostics in active case finding for pulmonary tuberculosis: A diagnostic case-control study. EClinicalMedicine, 2021, 33: 100776. doi:10.1016/j.eclinm.2021.100776.
doi: 10.1016/j.eclinm.2021.100776 URL |
[47] |
Dupnik KM, Bean JM, Lee MH, et al. Blood transcriptomic markers of Mycobacterium tuberculosis load in sputum. Int J Tuberc Lung Dis, 2018, 22(8): 950-958. doi:10.5588/ijtld.17.0855.
doi: 10.5588/ijtld.17.0855 pmid: 29991407 |
[48] |
Nahid P, Jarlsberg LG, Kato-Maeda M, et al. Interplay of strain and race/ethnicity in the innate immune response to M.tuberculosis. PLoS One, 2018, 13(5): e0195392. doi:10.1371/journal.pone.0195392.
doi: 10.1371/journal.pone.0195392 |
[49] |
Kong L, Moorlag S, Lefkovith A, et al. Single-cell transcriptomic profiles reveal changes associated with BCG-induced trained immunity and protective effects in circulating monocytes. Cell Rep, 2021, 37(7): 110028. doi:10.1016/j.celrep.2021.110028.
doi: 10.1016/j.celrep.2021.110028 URL |
[50] |
Ferluga J, Yasmin H, Al-Ahdal MN, et al. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology, 2020, 225(3): 151951. doi:10.1016/j.imbio.2020.151951.
doi: 10.1016/j.imbio.2020.151951 URL |
[51] |
Cirovic B, de Bree LCJ, Groh L, et al. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe, 2020, 28(2): 322-334.e5. doi:10.1016/j.chom.2020.05.014.
doi: S1931-3128(20)30296-1 pmid: 32544459 |
[52] |
Parwati I,van Crevel R, van Soolingen D. Possible underlying mechanisms for successful emergence of the Mycobacterium tuberculosis Beijing genotype strains. Lancet Infect Dis, 2010, 10(2): 103-111. doi:10.1016/S1473-3099(09)70330-5.
doi: 10.1016/S1473-3099(09)70330-5 pmid: 20113979 |
[53] |
Glynn JR, Whiteley J, Bifani PJ, et al. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis, 2002, 8(8): 843-849. doi:10.3201/eid0805.020002.
doi: 10.3201/eid0805.020002 URL |
[54] |
European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis. Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis, 2006, 12(5): 736-743. doi:10.3201/eid1205.050400.
doi: 10.3201/eid1205.050400 URL |
[55] |
Manca C, Tsenova L, Freeman S, et al. Hypervirulent M.tuberculosis W/Beijing strains upregulate type Ⅰ IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res, 2005, 25(11): 694-701. doi:10.1089/jir.2005.25.694.
doi: 10.1089/jir.2005.25.694 URL |
[56] |
Chacón-Salinas R, Serafín-López J, Ramos-Payán R, et al. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin Exp Immunol, 2005, 140(3): 443-449. doi:10.1111/j.1365-2249.2005.02797.x.
doi: 10.1111/j.1365-2249.2005.02797.x pmid: 15932505 |
[57] |
Rocha-Ramírez LM, Estrada-García I, López-Marín LM, et al. Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class Ⅱ expression in human macrophages. Tuberculosis (Edinb), 2008, 88(3): 212-220. doi:10.1016/j.tube.2007.10.003.
doi: 10.1016/j.tube.2007.10.003 URL |
[58] |
Sohn H, Lee KS, Kim SY, et al. Induction of cell death in human macrophages by a highly virulent Korean Isolate of Mycobacterium tuberculosis and the virulent strain H37Rv. Scand J Immunol, 2009, 69(1): 43-50. doi:10.1111/j.1365-3083.2008.02188.x.
doi: 10.1111/j.1365-3083.2008.02188.x pmid: 19140876 |
[59] |
Tsenova L, Harbacheuski R, Sung N, et al. BCG vaccination confers poor protection against M.tuberculosis HN878-induced central nervous system disease. Vaccine, 2007, 25(28): 5126-5132. doi:10.1016/j.vaccine.2006.11.024.
doi: 10.1016/j.vaccine.2006.11.024 pmid: 17241704 |
[60] |
López B, Aguilar D, Orozco H, et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol, 2003, 133(1): 30-37. doi:10.1046/j.1365-2249.2003.02171.x.
doi: 10.1046/j.1365-2249.2003.02171.x pmid: 12823275 |
[61] |
Ranaivomanana P, Rabodoarivelo MS, Ndiaye MDB, et al. Different PPD-stimulated cytokine responses from patients infected with genetically distinct Mycobacterium tuberculosis complex lineages. Int J Infect Dis, 2021, 104: 725-731. doi:10.1016/j.ijid.2021.01.073.
doi: 10.1016/j.ijid.2021.01.073 pmid: 33556615 |
[62] |
Tong J, Meng L, Bei C, et al. Modern Beijing sublineage of Mycobacterium tuberculosis shift macrophage into a hyperinflammatory status. Emerg Microbes Infect, 2022, 11(1): 715-724. doi:10.1080/22221751.2022.2037395.
doi: 10.1080/22221751.2022.2037395 URL |
[63] |
Ribeiro SC, Gomes LL, Amaral EP, et al. Mycobacterium tuberculosis strains of the modern sublineage of the Beijing family are more likely to display increased virulence than strains of the ancient sublineage. J Clin Microbiol, 2014, 52(7): 2615-2624. doi:10.1128/JCM.00498-14.
doi: 10.1128/JCM.00498-14 pmid: 24829250 |
[64] |
Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008, 18(9): 1509-1517. doi:10.1101/gr.079558.108.
doi: 10.1101/gr.079558.108 pmid: 18550803 |
[65] |
Rao MS, Van Vleet TR, Ciurlionis R, et al. Comparison of RNA-Seq and Microarray Gene Expression Platforms for the Toxicogenomic Evaluation of Liver From Short-Term Rat Toxicity Studies. Front Genet, 2018, 9: 636. doi:10.3389/fgene.2018.00636.
doi: 10.3389/fgene.2018.00636 pmid: 30723492 |
[66] |
Kogenaru S, Qing Y, Guo Y, et al. RNA-seq and microarray complement each other in transcriptome profiling. BMC Genomics, 2012, 13: 629. doi:10.1186/1471-2164-13-629.
doi: 10.1186/1471-2164-13-629 pmid: 23153100 |
[67] | Walzl G, McNerney R, du Plessis N, et al. Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis, 2018, 18(7): e199 -e210. doi:10.1016/S1473-3099(18)30111-7. |
[68] |
Wang X, Vanvalkenberg A, Odom-Mabey AR, et al. Comparison of gene set scoring methods for reproducible evaluation of multiple tuberculosis gene signatures. bioRxiv, 2023. doi:10.1101/2023.01.19.520627.
doi: 10.1101/2023.01.19.520627 |
[69] |
Kendall EA, Kitonsa PJ, Nalutaaya A, et al. The Spectrum of Tuberculosis Disease in an Urban Ugandan Community and Its Health Facilities. Clin Infect Dis, 2021, 72(12): e1035-e1043. doi:10.1093/cid/ciaa1824.
doi: 10.1093/cid/ciaa1824 |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||