中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (10): 1079-1084.doi: 10.19982/j.issn.1000-6621.20220194
收稿日期:
2022-05-23
出版日期:
2022-10-10
发布日期:
2022-09-30
通信作者:
沙巍
E-mail:shfksw@126.com
基金资助:
Wang Li, Yang Enzhuo, Sha Wei(), Shen Hongbo
Received:
2022-05-23
Online:
2022-10-10
Published:
2022-09-30
Contact:
Sha Wei
E-mail:shfksw@126.com
Supported by:
摘要:
目前结核病临床治疗面临众多挑战,特别是耐多药结核病。免疫治疗可以提高机体对结核分枝杆菌感染的保护性免疫应答,是常规化学药物治疗的重要辅助。本文总结了有潜力用于结核病免疫治疗的细胞因子、免疫细胞以及免疫调节药物的研究进展,并分析了其临床应用前景,旨在为结核病的临床研究和机制探索提供思路。
中图分类号:
王丽, 杨恩卓, 沙巍, 沈洪波. 结核病免疫治疗的研究进展[J]. 中国防痨杂志, 2022, 44(10): 1079-1084. doi: 10.19982/j.issn.1000-6621.20220194
Wang Li, Yang Enzhuo, Sha Wei, Shen Hongbo. Research progress in immunotherapy of tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(10): 1079-1084. doi: 10.19982/j.issn.1000-6621.20220194
表2
免疫细胞治疗
免疫细胞 | 治疗方式 | 作用机制 | 主要效果 |
---|---|---|---|
Vγ2Vδ2T细胞 | 体外扩增回输或者体内刺激γδT细胞增殖 | 识别MTB和宿主细胞的磷酸抗原 | 抗感染 |
固有自然杀伤T细胞 | 固有自然杀伤T细胞移植 | 释放大量IFN-γ进一步激活巨噬细胞,分泌粒细胞-巨噬细胞集落刺激因子 | 抑制MTB的增殖 |
黏膜相关固有T细胞 | 5-OP-RU疫苗刺激 | 分泌IFN-γ、TNF-α,启动CD4+T 细胞,减少靶器官MTB菌落数 | 早期感染控制 |
调节性T细胞 | 抑制调节性T细胞增殖和活性 | 干扰树突状细胞对T细胞的激活,抑制Th1和Th17介导的免疫反应 | 提高免疫应答水平 |
细胞因子诱导的杀伤细胞 | 体外扩增和活化淋巴细胞后回输 | 具有T淋巴细胞强大的免疫活性和NK细胞的非主要组织相容性复合体限制的优点 | 提高MDR-TB的疗效 |
[1] |
Weiss G, Schaible UE. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015, 264(1):182-203. doi: 10.1111/imr.12266.
doi: 10.1111/imr.12266 pmid: 25703560 |
[2] |
Ernst JD. Mechanisms of M.tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe, 2018, 24(1):34-42. doi: 10.1016/j.chom.2018.06.004.
doi: S1931-3128(18)30316-0 pmid: 30001523 |
[3] |
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-gamma): Exploring its implications in infectious diseases. Biomol Concepts, 2018, 9(1):64-79. doi: 10.1515/bmc-2018-0007.
doi: 10.1515/bmc-2018-0007 URL |
[4] |
Ni B, Rajaram MV, Lafuse WP, et al. Mycobacterium tuberculosis decreases human macrophage IFN-γ responsiveness through miR-132 and miR-26a. J Immunol, 2014, 193(9):4537-4547. doi: 10.4049/jimmunol.1400124.
doi: 10.4049/jimmunol.1400124 URL |
[5] |
Gao XF, Yang ZW, Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systema-tic review. Int J Infect Dis, 2011, 15(9):e594-600. doi: 10.1016/j.ijid.2011.05.002.
doi: 10.1016/j.ijid.2011.05.002 URL |
[6] |
Rothchild AC, Jayaraman P, Nunes-Alves C, et al. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLoS Pathog, 2014, 10(1):e1003805. doi: 10.1371/journal.ppat.1003805.
doi: 10.1371/journal.ppat.1003805 URL |
[7] |
Rothchild AC, Stowell B, Goyal G, et al. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection. mBio, 2017, 8(5):e01514-17. doi: 10.1128/mBio.01514-17.
doi: 10.1128/mBio.01514-17 |
[8] |
Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, et al. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol, 2013, 171(3):283-297. doi: 10.1111/cei.12015.
doi: 10.1111/cei.12015 pmid: 23379435 |
[9] |
Zhang Y, Liu J, Wang Y, et al. Immunotherapy using IL-2 and GM-CSF is a potential treatment for multidrug-resistant Mycobacterium tuberculosis. Sci China Life Sci, 2012, 55(9):800-806. doi: 10.1007/s11427-012-4368-x.
doi: 10.1007/s11427-012-4368-x URL |
[10] |
Di Paolo NC, Shafiani S, Day T, et al. Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity, 2015, 43(6):1125-1136. doi: 10.1016/j.immuni.2015.11.016.
doi: 10.1016/j.immuni.2015.11.016 URL |
[11] |
Sousa J, Cá B, Maceiras AR, et al. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun, 2020, 11(1):1949. doi: 10.1038/s41467-020-15832-6.
doi: 10.1038/s41467-020-15832-6 |
[12] |
Moorlag SJCFM, Khan N, Novakovic B, et al. β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Rep, 2020, 31(7):107634. doi: 10.1016/j.celrep.2020.107634.
doi: 10.1016/j.celrep.2020.107634 URL |
[13] |
Liu X, Li F, Niu H, et al. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimu-lation. Front Immunol, 2019, 10:2350. doi: 10.3389/fimmu.2019.02350.
doi: 10.3389/fimmu.2019.02350 URL |
[14] |
Tan Q, Min R, Dai GQ, et al. Clinical and Immunological Effects of rhIL-2 Therapy in Eastern Chinese Patients with Multidrug-resistant Tuberculosis. Sci Rep, 2017, 7(1):17854. doi: 10.1038/s41598-017-18200-5.
doi: 10.1038/s41598-017-18200-5 pmid: 29259310 |
[15] |
Zhang R, Xi X, Wang C, et al. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: A systematic review and meta-analysis. PLoS One, 2018, 13(7):e0201025. doi: 10.1371/journal.pone.0201025.
doi: 10.1371/journal.pone.0201025 URL |
[16] |
Mi J, Liang Y, Liang J, et al. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol, 2021, 11:763591. doi: 10.3389/fcimb.2021.763591.
doi: 10.3389/fcimb.2021.763591 URL |
[17] |
Rao M, Ligeiro D, Maeurer M. Precision medicine in the clinical management of respiratory tract infections including multidrug-resistant tuberculosis: learning from innovations in immuno-oncology. Curr Opin Pulm Med, 2019, 25(3):233-241. doi: 10.1097/MCP.0000000000000575.
doi: 10.1097/MCP.0000000000000575 pmid: 30883448 |
[18] |
Shen Y, Zhou D, Qiu L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science, 2002, 295(5563):2255-2258. doi: 10.1126/science.1068819.
doi: 10.1126/science.1068819 pmid: 11910108 |
[19] |
Herrmann T, Fichtner AS, Karunakaran MM. An Update on the Molecular Basis of Phosphoantigen Recognition by Vγ9Vδ2 T Cells. Cells, 2020, 9(6):1433. doi: 10.3390/cells9061433.
doi: 10.3390/cells9061433 |
[20] |
Shen L, Huang D, Qaqish A, et al. Fast-acting γδ T-cell subpopulation and protective immunity against infections. Immunol Rev, 2020, 298(1):254-263. doi: 10.1111/imr.12927.
doi: 10.1111/imr.12927 pmid: 33037700 |
[21] |
Yan L, Shen H, Xiao H. Characteristics of peripheral Vγ2Vδ2 T cells in interferon-γ release assay negative pulmonary tuberculosis patients. BMC Infect Dis, 2018, 18(1):453. doi: 10.1186/s12879-018-3328-x.
doi: 10.1186/s12879-018-3328-x |
[22] |
Gao Y, Zhang S, Ou Q, et al. Characterization of CD4/CD8+ alphabeta and Vgamma2Vdelta2+ T cells in HIV-negative individuals with different Mycobacterium tuberculosis infection statuses. Hum Immunol, 2015, 76(11):801-807. doi: 10.1016/j.humimm.2015.09.039.
doi: 10.1016/j.humimm.2015.09.039 URL |
[23] |
Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol, 2010, 11(3):197-206. doi: 10.1038/ni.1841.
doi: 10.1038/ni.1841 pmid: 20139988 |
[24] |
Mogues T, Goodrich ME, Ryan L, et al. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med, 2001, 193(3):271-280. doi: 10.1084/jem.193.3.271.
doi: 10.1084/jem.193.3.271 pmid: 11157048 |
[25] |
Sada-Ovalle I, Chiba A, Gonzales A, et al. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog, 2008, 4(12):e1000239. doi: 10.1371/journal.ppat.1000239.
doi: 10.1371/journal.ppat.1000239 URL |
[26] |
Godfrey DI, Koay HF, McCluskey J, et al. The biology and functional importance of MAIT cells. Nat Immunol, 2019, 20(9):1110-1128. doi: 10.1038/s41590-019-0444-8.
doi: 10.1038/s41590-019-0444-8 pmid: 31406380 |
[27] |
Suliman S, Gela A, Mendelsohn SC, et al. Peripheral Blood Mucosal-Associated Invariant T Cells in Tuberculosis Patients and Healthy Mycobacterium tuberculosis-Exposed Controls. J Infect Dis, 2020, 222(6):995-1007. doi: 10.1093/infdis/jiaa173.
doi: 10.1093/infdis/jiaa173 pmid: 32267943 |
[28] |
Kauffman KD, Sallin MA, Hoft SG, et al. Limited Pulmonary Mucosal-Associated Invariant T Cell Accumulation and Activation during Mycobacterium tuberculosis Infection in Rhesus Macaques. Infect Immun, 2018, 86(12):e00431-18. doi: 10.1128/iai.00431-18.
doi: 10.1128/iai.00431-18 |
[29] |
Sakai S, Kauffman KD, Oh S, et al. MAIT cell-directed thera-py of Mycobacterium tuberculosis infection. Mucosal Immunol, 2021, 14(1):199-208. doi: 10.1038/s41385-020-0332-4.
doi: 10.1038/s41385-020-0332-4 URL |
[30] |
Cardona P, Cardona PJ. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol, 2019, 10:2139. doi: 10.3389/fimmu.2019.02139.
doi: 10.3389/fimmu.2019.02139 |
[31] |
Geffner L, Yokobori N, Basile J, et al. Patients with multidrug-resistant tuberculosis display impaired Th 1 responses and enhanced regulatory T-cell levels in response to an outbreak of multidrug-resistant Mycobacterium tuberculosis M and Ra strains. Infect Immun, 2009, 77(11):5025-5034. doi: 10.1128/IAI.00224-09.
doi: 10.1128/IAI.00224-09 pmid: 19720756 |
[32] |
Davids M, Pooran AS, Pietersen E, et al. Regulatory T Cells Subvert Mycobacterial Containment in Patients Failing Extensively Drug-Resistant Tuberculosis Treatment. Am J Respir Crit Care Med, 2018, 198(1):104-116. doi: 10.1164/rccm.201707-1441OC.
doi: 10.1164/rccm.201707-1441OC URL |
[33] |
Introna M. CIK as therapeutic agents against tumors. J Autoimmun, 2017, 85:32-44. doi: 10.1016/j.jaut.2017.06.008.
doi: S0896-8411(17)30413-4 pmid: 28679475 |
[34] |
Xu JC, Chen XN, Ye ZJ, et al. New attempt in tuberculosis treatment: autologous cytokine-induced killer after chemothera-py treatment failure in a case of multi-drug resistant tuberculosis (MTB). Sarcoidosis Vasc Diffuse Lung Dis, 2017, 34(1):97-99. doi: 10.36141/svdld.v34i1.5084.
doi: 10.36141/svdld.v34i1.5084 |
[35] |
Xu P, Pang Y, Xu J, et al. Cytokine-induced killer cell therapy as a promising adjunctive immunotherapy for multidrug-resistant pulmonary TB: a case report. Immunotherapy, 2018, 10(10):827-830. doi: 10.2217/imt-2017-0192.
doi: 10.2217/imt-2017-0192 pmid: 30073894 |
[36] |
林晶晶, 刘旭晖, 卢水华. 结核病疫苗的临床试验进展. 中华传染病杂志, 2020, 38(7):455-459. doi: 10.3760/cma.j.cn311365-20190308-00078.
doi: 10.3760/cma.j.cn311365-20190308-00078 |
[37] |
Gong WP, Liang Y, Ling YB, et al. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Mil Med Res, 2020, 7(1):25. doi: 10.1186/s40779-020-00258-4.
doi: 10.1186/s40779-020-00258-4 |
[38] |
侯长浩, 路小欢, 陆雪儿, 等. 新型结核疫苗的研究进展. 中国病原生物学杂志, 2018, 13(8):925-929. doi: 10.13350/j.cjpb.180830.
doi: 10.13350/j.cjpb.180830 |
[39] |
Sharma SK, Katoch K, Sarin R, et al. Efficacy and Safety of Mycobacterium indicus pranii as an adjunct therapy in Category Ⅱ pulmonary tuberculosis in a randomized trial. Scientific Reports, 2017, 7(1):3354. doi: 10.1038/s41598-017-03514-1.
doi: 10.1038/s41598-017-03514-1 URL |
[40] |
Yan Q, Liu H, Cheng Z, et al. Immunotherapeutic effect of BCG-polysaccharide nucleic acid powder on Mycobacterium tuberculosis-infected mice using microneedle patches. Drug Deliv, 2017, 24(1):1648-1653. doi: 10.1080/10717544.2017.1391892.
doi: 10.1080/10717544.2017.1391892 URL |
[41] |
徐琳, 张程, 叶贤伟, 等. 卡介菌多糖核酸对慢性阻塞性肺疾病患者体液免疫及外周血白细胞介素-8和肿瘤坏死因子-α的影响. 华西医学, 2015, 30(1):1-5. doi: 10.7507/1002-0179.20150001.
doi: 10.7507/1002-0179.20150001 |
[42] |
Cao W, Xiao X, Zhang L, et al. Acupoint injection of Bacillus Calmette-Guerin polysaccharide nucleic acid for patients with chronic urticaria: A protocol for systematic review. Medicine (Baltimore), 2020, 99(18):e19924. doi: 10.1097/MD.0000000000019924.
doi: 10.1097/MD.0000000000019924 URL |
[43] |
李丽琴, 何莹, 张莲. 卡介菌多糖核酸联合抗组胺药物治疗慢性特发性荨麻疹的临床效果. 临床合理用药杂志, 2021, 14(17):135-137. doi: 10.15887/j.cnki.13-1389/r.2021.17.058.
doi: 10.15887/j.cnki.13-1389/r.2021.17.058 |
[44] |
陶锐. 卡介菌多糖核酸辅助治疗生殖器疱疹的临床效果与安全性. 临床合理用药杂志, 2021, 14(20):133-135. doi: 10.15887/j.cnki.13-1389/r.2021.20.055.
doi: 10.15887/j.cnki.13-1389/r.2021.20.055 |
[45] |
Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018, 379(17):1621-1634. doi: 10.1056/NEJMoa1803484.
doi: 10.1056/NEJMoa1803484 URL |
[46] |
Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015, 33(33):4130-4140. doi: 10.1016/j.vaccine.2015.06.051.
doi: 10.1016/j.vaccine.2015.06.051 URL |
[47] |
Bernard-Raichon L, Colom A, Monard SC, et al. A Pulmonary Lactobacillus murinus Strain Induces Th17 and RORgammat(+) Regulatory T Cells and Reduces Lung Inflammation in Tuberculosis. J Immunol, 2021, 207(7):1857-1870. doi: 10.4049/jimmunol.2001044.
doi: 10.4049/jimmunol.2001044 pmid: 34479945 |
[48] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1):9-27. doi: 10.19982/j.issn.1000-6621.20210680.
doi: 10.19982/j.issn.1000-6621.20210680 |
[49] |
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475):eaat2702. doi: 10.1126/scitranslmed.aat2702.
doi: 10.1126/scitranslmed.aat2702 URL |
[50] |
Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi: 10.7554/eLife.52668.
doi: 10.7554/eLife.52668 URL |
[1] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[4] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[5] | 宋云林, 布祖克拉·阿布都艾尼, 王桂荣, 张继园, 鲁晓擘. 钙结合蛋白S100A12与中性粒细胞胞外诱捕网形成在重症肺结核患者肺损伤中作用机制研究进展[J]. 中国防痨杂志, 2025, 47(4): 513-519. |
[6] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[7] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[8] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[9] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[10] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[11] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[12] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[13] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[14] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[15] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||