中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (5): 505-511.doi: 10.19982/j.issn.1000-6621.20210693
收稿日期:
2021-12-03
出版日期:
2022-05-10
发布日期:
2022-05-04
通信作者:
袁小亮
E-mail:yxlyyxs@126.com
基金资助:
WU Chao-ling1, DENG Guo-fang2, FU Liang2, YUAN Xiao-liang3()
Received:
2021-12-03
Online:
2022-05-10
Published:
2022-05-04
Contact:
YUAN Xiao-liang
E-mail:yxlyyxs@126.com
Supported by:
摘要:
现有肺部感染性疾病的诊断方法通常是有创的,且需要专门的实验室和技术,因此有必要开发无创的诊断工具。基于呼出气挥发性有机化合物(volatile organic compounds,VOC)的检测方法已经显示出作为传统诊断替代工具的潜力,用于快速、实时识别各种病原体。VOC来源于人体很多内源性生化过程,包括脂质氧化,以及碳水化合物和脂肪酸代谢等。来自这些过程的气相代谢物和分解产物经由循环系统转运,并通过肺部迅速排出体外。因此,它们有成为肺部感染性疾病诊断和监测潜在无创代谢生物标志物的可能。笔者综述了VOC检测的原理和常用技术、VOC的采集方法、VOC在肺部感染性疾病中的研究现状和存在的问题,并对基于呼出气的VOC分析方法进行展望。
中图分类号:
吴超玲, 邓国防, 付亮, 袁小亮. 呼出气挥发性有机物在肺部感染性疾病诊断中的研究进展[J]. 中国防痨杂志, 2022, 44(5): 505-511. doi: 10.19982/j.issn.1000-6621.20210693
WU Chao-ling, DENG Guo-fang, FU Liang, YUAN Xiao-liang. Research progress of exhaled volatile organic compounds on the diagnosis of pulmonary infectious diseases[J]. Chinese Journal of Antituberculosis, 2022, 44(5): 505-511. doi: 10.19982/j.issn.1000-6621.20210693
[1] |
Fens N, van der Schee MP, Brinkman P, et al. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy, 2013, 43(7): 705-715. doi: 10.1111/cea.12052.
doi: 10.1111/cea.12052 pmid: 23786277 |
[2] |
Clark PJ, Patel K. Noninvasive tools to assess liver disease. Curr Opin Gastroenterol, 2011, 27(3): 210-216. doi: 10.1097/MOG.0b013e328343e9a3.
doi: 10.1097/MOG.0b013e328343e9a3 URL |
[3] |
Schubert JK, Miekisch W, Geiger K, et al. Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn, 2004, 4(5):619-629. doi: 10.1586/14737159.4.5.619.
doi: 10.1586/14737159.4.5.619 pmid: 15347256 |
[4] |
Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci U S A, 1971, 68(10): 2374-2376. doi: 10.1073/pnas.68.10.2374.
doi: 10.1073/pnas.68.10.2374 pmid: 5289873 |
[5] |
Das S, Pal M. Review-Non-Invasive Monitoring of Human Health by Exhaled Breath Analysis: A Comprehensive Review. J Electrochem Soc, 2020, 167(3):37522-37562. doi: 10.1149/1945-7111/ab67a6.
doi: 10.1149/1945-7111/ab67a6 URL |
[6] |
Gordon SM, Szidon JP, Krotoszynski BK, et al. Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem, 1985, 31(8):1278-1282.
pmid: 4017231 |
[7] |
van der Schee MP, Paff T, Brinkman P, et al. Breathomics in lung disease. Chest, 2015, 147(1): 224-231. doi: 10.1378/chest.14-0781.
doi: 10.1378/chest.14-0781 URL |
[8] |
Bos LD, Sterk PJ, Schultz MJ . Volatile metabolites of pathogens: a systematic review. PLoS Pathog, 2013, 9(5): e1003311. doi: 10.1371/journal.ppat.1003311.
doi: 10.1371/journal.ppat.1003311 URL |
[9] |
Rios-Navarro A, Gonzalez M, Carazzone C, et al. Learning about microbial language: possible interactions mediated by microbial volatile organic compounds (VOCs) and relevance to understanding Malassezia spp. metabolism. Metabolomics, 2021, 17(4): 39. doi: 10.1007/s11306-021-01786-3.
doi: 10.1007/s11306-021-01786-3 pmid: 33825999 |
[10] |
Miekisch W, Kischkel S, Sawacki A, et al. Impact of sampling procedures on the results of breath analysis. J Breath Res, 2008, 2(2):26007. doi: 10.1088/1752-7155/2/2/026007.
doi: 10.1088/1752-7155/2/2/026007 pmid: 21383448 |
[11] |
Kim YH, Kim KH. Test on the reliability of gastight syringes as transfer/storage media for gaseous VOC analysis: the extent of VOC sorption between the inner needle and a glass wall surface. Anal Chem, 2015, 87(5):3056-3063. doi: 10.1021/ac504713y.
doi: 10.1021/ac504713y URL |
[12] |
Poli D, Carbognani P, Corradi M, et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study. Respir Res, 2005, 6(1): 71. doi: 10.1186/1465-9921-6-71.
doi: 10.1186/1465-9921-6-71 URL |
[13] |
Meng S, Li Q, Zhou Z, et al. Assessment of an Exhaled Breath Test Using High-Pressure Photon Ionization Time-of-Flight Mass Spectrometry to Detect Lung Cancer. JAMA Netw Open, 2021, 4(3): e213486. doi: 10.1001/jamanetworkopen.2021.3486.
doi: 10.1001/jamanetworkopen.2021.3486 URL |
[14] |
Huang Q, Wang S, Li Q, et al. Assessment of Breathomics Testing Using High-Pressure Photon Ionization Time-of-Flight Mass Spectrometry to Detect Esophageal Cancer. JAMA Netw Open, 2021, 4(10): e2127042. doi: 10.1001/jamanetworkopen.2021.27042.
doi: 10.1001/jamanetworkopen.2021.27042 URL |
[15] |
Dharmawardana N, Woods C, Watson DI, et al. A review of breath analysis techniques in head and neck cancer. Oral Oncol, 2020, 104: 104654. doi: 10.1016/j.oraloncology.2020.104654.
doi: 10.1016/j.oraloncology.2020.104654 URL |
[16] |
Beale DJ, Pinu FR, Kouremenos KA, et al. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics, 2018, 14(11): 152. doi: 10.1007/s11306-018-1449-2.
doi: 10.1007/s11306-018-1449-2 URL |
[17] |
Jare OJ, Munoz MA, Wagner C, et al. Volatile Organic Compounds (VOC) in Exhaled Breath in Patients with Lung Cancer. Chest, 2014, 145(3):334A.
doi: 10.1378/chest.1821540 URL |
[18] |
Malásková M, Henderson B, Chellayah PD, et al. Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies. J Breath Res, 2019, 13(4): 046009. doi: 10.1088/1752-7163/ab26e2.
doi: 10.1088/1752-7163/ab26e2 URL |
[19] |
Sˇpaněl P, Spesyvyi A, Smith D. Electrostatic Switching and Selection of H3O+, NO+, and O+2 ·Reagent Ions for Selected Ion Flow-Drift Tube Mass Spectrometric Analyses of Air and Breath. Anal Chem, 2019, 91(8):5380-5388. doi: 10.1021/acs.analchem.9b00530.
doi: 10.1021/acs.analchem.9b00530 URL |
[20] |
曾天禹, 徐航, 黄显. 呼出气传感器进展、挑战和未来. 仪器仪表学报, 2019, 40(8): 65-81. doi: 10.19650/j.cnki.cjsi.J1905297.
doi: 10.19650/j.cnki.cjsi.J1905297 |
[21] |
Pugliese G, Trefz P, Brock B, et al. Extending PTR based breath analysis to real-time monitoring of reactive volatile organic compounds. Analyst, 2019, 144(24):7359-7367. doi: 10.1039/c9an01478k.
doi: 10.1039/c9an01478k URL |
[22] |
Markar SR, Chin ST, Romano A, et al. Breath Volatile Organic Compound Profiling of Colorectal Cancer Using Selected Ion Flow-tube Mass Spectrometry. Ann Surg, 2019, 269(5): 903-910. doi: 10.1097/SLA.0000000000002539.
doi: 10.1097/SLA.0000000000002539 URL |
[23] |
Farraia MV, Cavaleiro Rufo J, Paciência I, et al. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed J, 2019, 4(4): e42. doi: 10.1097/j.pbj.0000000000000042.
doi: 10.1097/j.pbj.0000000000000042 URL |
[24] |
Chang JE, Lee DS, Ban SW, et al. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sens Actuators B Chem, 2017, 255(1): 800-807. doi: 10.1016/j.snb.2017.08.057.
doi: 10.1016/j.snb.2017.08.057 URL |
[25] |
McWilliams A, Beigi P, Srinidhi A, et al. Sex and Smoking Status Effects on the Early Detection of Early Lung Cancer in High-Risk Smokers Using an Electronic Nose. IEEE Trans Biomed Eng, 2015, 62(8): 2044-2054. doi: 10.1109/TBME.2015.2409092.
doi: 10.1109/TBME.2015.2409092 pmid: 25775482 |
[26] |
Belizário JE, Faintuch J, Malpartida MG. Breath Biopsy and Discovery of Exclusive Volatile Organic Compounds for Diagnosis of Infectious Diseases. Front Cell Infect Microbiol, 2021, 10: 564194. doi: 10.3389/fcimb.2020.564194.
doi: 10.3389/fcimb.2020.564194 URL |
[27] |
Li Q, Hua L, Xie Y, et al. Single photon ionization time-of-flight mass spectrometry with a windowless RF-discharge lamp for high temporal resolution monitoring of the initial stage of methanol-to-olefins reaction. Analyst, 2019, 144(4): 1104-1109. doi: 10.1039/c8an01840e.
doi: 10.1039/c8an01840e URL |
[28] |
Jiang D, Wang X, Chen C, et al. Dopant-assisted photoionization positive ion mobility spectrometry coupled with time-resolved purge introduction for online quantitative monitoring of intraoperative end-tidal propofol. Anal Chim Acta, 2018, 1032:83-90. doi: 10.1016/j.aca.2018.06.047.
doi: 10.1016/j.aca.2018.06.047 URL |
[29] |
Chen X, Hua L, Jiang J, et al. Multi-capillary column high-pressure photoionization time-of-flight mass spectrometry and its application for online rapid analysis of flavor compounds. Talanta, 2019, 201:33-39. doi: 10.1016/j.talanta.2019.03.103.
doi: 10.1016/j.talanta.2019.03.103 URL |
[30] |
Xiao Y, Wang X, Li E, et al. Rapid determination of intraoperative blood propofol concentration in operating theatre by dopant-enhanced neutral release and negative photoionization ion mobility spectrometry. Anal Chim Acta, 2020, 1098: 47-55. doi: 10.1016/j.aca.2019.11.011.
doi: S0003-2670(19)31354-6 pmid: 31948586 |
[31] |
Jiang D, Li E, Zhou Q, et al. Online Monitoring of Intraoperative Exhaled Propofol by Acetone-Assisted Negative Photoionization Ion Mobility Spectrometry Coupled with Time-Resolved Purge Introduction. Anal Chem, 2018, 90(8): 5280-5289. doi: 10.1021/acs.analchem.8b00171.
doi: 10.1021/acs.analchem.8b00171 URL |
[32] |
Walker HJ, Burrell MM. Could breath analysis by MS could be a solution to rapid, non-invasive testing for COVID-19? Bioanalysis, 2020, 12(17):1213-1217. doi: 10.4155/bio-2020-0125.
doi: 10.4155/bio-2020-0125 URL |
[33] |
Grassin-Delyle S, Roquencourt C, Moine P, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine, 2021, 63: 103154. doi: 10.1016/j.ebiom.2020.103154.
doi: 10.1016/j.ebiom.2020.103154 URL |
[34] |
Ruszkiewicz DM, Sanders D, O’Brien R, et al. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry-a feasibility study. EClinicalMedicine, 2020, 29: 100609. doi: 10.1016/j.eclinm.2020.100609.
doi: 10.1016/j.eclinm.2020.100609 |
[35] |
Berna AZ, Akaho EH, Harris RM, et al. Reproducible breath metabolite changes in children with SARS-CoV-2 infection. medRxiv, 2021: 2020.12.04.20230755. doi: 10.1101/2020.12.04.20230755.
doi: 10.1101/2020.12.04.20230755 |
[36] |
Jendrny P, Schulz C, Twele F, et al. Scent dog identification of samples from COVID-19 patients-a pilot study. BMC Infect Dis, 2020, 20(1): 536. doi: 10.1186/s12879-020-05281-3.
doi: 10.1186/s12879-020-05281-3 pmid: 32703188 |
[37] |
Wintjens AGWE, Hintzen KFH, Engelen SME, et al. Applying the electronic nose for pre-operative SARS-CoV-2 screening. Surg Endosc, 2021, 35(12): 6671-6678. doi: 10.1007/s00464-020-08169-0.
doi: 10.1007/s00464-020-08169-0 pmid: 33269428 |
[38] |
Traxler S, Barkowsky G, Saβ R, et al. Volatile scents of influenza A and S. pyogenes (co-)infected cells. Sci Rep, 2019, 9(1):18894. doi: 10.1038/s41598-019-55334-0.
doi: 10.1038/s41598-019-55334-0 pmid: 31827195 |
[39] |
Abd El Qader A, Lieberman D, Shemer Avni Y, et al. Volatile organic compounds generated by cultures of bacteria and viruses associated with respiratory infections. Biomed Chromatogr, 2015, 29(12):1783-1790. doi: 10.1002/bmc.3494.
doi: 10.1002/bmc.3494 pmid: 26033043 |
[40] |
Traxler S, Bischoff AC, Saβ R, et al. VOC breath profile in spontaneously breathing awake swine during Influenza A infection. Sci Rep, 2018, 8(1):14857. doi: 10.1038/s41598-018-33061-2.
doi: 10.1038/s41598-018-33061-2 pmid: 30291257 |
[41] |
Purcaro G, Rees CA, Wieland-Alter WF, et al. Volatile fingerprinting of human respiratory viruses from cell culture. J Breath Res, 2018, 12(2): 026015. doi: 10.1088/1752-7163/aa9eef.
doi: 10.1088/1752-7163/aa9eef URL |
[42] |
Telagathoti A, Probst M, Khomenko I, et al. High-Throughput Volatilome Fingerprint Using PTR-ToF-MS Shows Species-Specific Patterns in Mortierella and Closely Related Genera. J Fungi (Basel), 2021, 7(1): 66. doi: 10.3390/jof7010066.
doi: 10.3390/jof7010066 |
[43] |
Gerritsen MG, Brinkman P, Escobar N, et al. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry. Med Mycol, 2018, 56(2): 253-256. doi: 10.1093/mmy/myx035.
doi: 10.1093/mmy/myx035 pmid: 28525576 |
[44] |
Koo S, Thomas HR, Daniels SD, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis, 2014, 59(12):1733-1740. doi: 10.1093/cid/ciu725.
doi: 10.1093/cid/ciu725 URL |
[45] |
de Heer K, Vonk SI, Kok M, et al. eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae. J Breath Res, 2016, 10(3):036008. doi: 10.1088/1752-7155/10/3/036008.
doi: 10.1088/1752-7155/10/3/036008 URL |
[46] |
王彤, 曾沛荧, 王明蝶 , 等. 基于气相离子迁移谱研究肺隐球病患者呼出气中特征挥发性有机物. 分析测试学报, 2020, 39(4): 467-472. doi: 10.3969/j.issn.1004-4957.2020.04.006.
doi: 10.3969/j.issn.1004-4957.2020.04.006 |
[47] |
Mellors TR, Rees CA, Franchina FA, et al. The volatile molecular profiles of seven Streptococcus pneumoniae serotypes. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1096: 208-213. doi: 10.1016/j.jchromb.2018.08.032.
doi: 10.1016/j.jchromb.2018.08.032 URL |
[48] |
van Oort PM, Brinkman P, Slingers G, et al. Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept study. Am J Physiol Lung Cell Mol Physiol, 2019, 316(5): L751-L756. doi: 10.1152/ajplung.00449.2018.
doi: 10.1152/ajplung.00449.2018 |
[49] |
Ahmed WM, Brinkman P, Weda H, et al. Methodological considerations for large-scale breath analysis studies: lessons from the U-BIOPRED severe asthma project. J Breath Res, 2018, 13(1): 016001. doi: 10.1088/1752-7163/aae557.
doi: 10.1088/1752-7163/aae557 URL |
[50] | 中华人民共和国国家卫生和计划生育委员会. WS 288-2017 肺结核诊断. 2017-11-09. |
[51] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[52] |
Saktiawati AMI, Putera DD, Setyawan A, et al. Diagnosis of tuberculosis through breath test: A systematic review. EBioMedicine, 2019, 46:202-214. doi: 10.1016/j.ebiom.2019.07.056.
doi: S2352-3964(19)30498-0 pmid: 31401197 |
[53] |
Phillips M, Cataneo RN, Condos R, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinb), 2007, 87(1): 44-52. doi: 10.1016/j.tube.2006.03.004.
doi: 10.1016/j.tube.2006.03.004 URL |
[54] |
Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb), 2010, 90(2): 145-151. doi: 10.1016/j.tube.2010.01.003.
doi: 10.1016/j.tube.2010.01.003 URL |
[55] |
Phillips M, Basa-Dalay V, Blais J, et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb), 2012, 92(4): 314-320. doi: 10.1016/j.tube.2012.04.002.
doi: 10.1016/j.tube.2012.04.002 URL |
[56] |
Syhre M, Chambers ST. The scent of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2008, 88(4): 317-323. doi: 10.1016/j.tube.2008.01.002.
doi: 10.1016/j.tube.2008.01.002 URL |
[57] |
Syhre M, Manning L, Phuanukoonnon S, et al. The scent of Mycobacterium tuberculosis-part II breath. Tuberculosis (Edinb), 2009, 89(4): 263-266. doi: 10.1016/j.tube.2009.04.003.
doi: 10.1016/j.tube.2009.04.003 URL |
[58] |
Bhatter P, Raman K, Janakiraman V. Elucidating the biosynthetic pathways of volatile organic compounds in Mycobacterium tuberculosis through a computational approach. Mol Biosyst, 2017, 13(4): 750-755. doi: 10.1039/c6mb00796a.
doi: 10.1039/c6mb00796a pmid: 28225105 |
[59] |
Kolk AH, van Berkel JJ, Claassens MM, et al. Breath analysis as a potential diagnostic tool for tuberculosis. Int J Tuberc Lung Dis, 2012, 16(6):777-782. doi: 10.5588/ijtld.11.0576.
doi: 10.5588/ijtld.11.0576 pmid: 22507235 |
[60] |
Beccaria M, Mellors TR, Petion JS, et al. Preliminary investigation of human exhaled breath for tuberculosis diagnosis by multidimensional gas chromatography-Time of flight mass spectrometry and machine learning. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1074-1075:46-50. doi: 10.1016/j.jchromb.2018.01.004.
doi: S1570-0232(17)31882-2 pmid: 29331743 |
[61] |
Küntzel A, Oertel P, Fischer S, et al. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species. PLoS One, 2018, 13(3): e194348. doi: 10.1371/journal.pone.0194348.
doi: 10.1371/journal.pone.0194348 |
[62] |
Mellors TR, Nasir M, Franchina FA, et al. Identification of Mycobacterium tuberculosis using volatile biomarkers in culture and exhaled breath. J Breath Res, 2018, 13(1): 016004. doi: 10.1088/1752-7163/aacd18.
doi: 10.1088/1752-7163/aacd18 URL |
[63] |
Bobak CA, Kang L, Workman L, et al. Breath can discriminate tuberculosis from other lower respiratory illness in children. Sci Rep, 2021, 11(1):2704. doi: 10.1038/s41598-021-80970-w.
doi: 10.1038/s41598-021-80970-w URL |
[64] |
Lim SH, Martino R, Anikst V, et al. Rapid Diagnosis of Tuberculosis from Analysis of Urine Volatile Organic Compounds. ACS Sens, 2016, 1(7):852-856. doi: 10.1021/acssensors.6b00309.
doi: 10.1021/acssensors.6b00309 URL |
[65] |
Nol P, Ionescu R, Geremariam Welearegay T, et al. Evaluation of Volatile Organic Compounds Obtained from Breath and Feces to Detect Mycobacterium tuberculosis Complex in Wild Boar (Sus scrofa) in Doñana National Park, Spain. Pathogens, 2020, 9(5): 346. doi: 10.3390/pathogens9050346.
doi: 10.3390/pathogens9050346 URL |
[66] |
Palma SICJ, Traguedo AP, Porteira AR, et al. Machine learning for the meta-analyses of microbial pathogens’ volatile signatures. Sci Rep, 2018, 8(1):3360. doi: 10.1038/s41598-018-21544-1.
doi: 10.1038/s41598-018-21544-1 URL |
[67] |
Ratiu IA, Ligor T, Bocos-Bintintan V, et al. Mass spectrometric techniques for the analysis of volatile organic compounds emitted from bacteria. Bioanalysis, 2017, 9(14): 1069-1092. doi: 10.4155/bio-2017-0051.
doi: 10.4155/bio-2017-0051 URL |
[1] | 梁瑞云, 方伟军, 任会丽, 黎惠如, 张晖. 非结核分枝杆菌肺病并发与未并发糖尿病患者的CT征象研究[J]. 中国防痨杂志, 2020, 42(9): 962-967. |
[2] | 张明辉,张秋娣,张素娟,孙益芳. 55例HIV阴性肺隐球菌病胸部CT表现的研究[J]. 中国防痨杂志, 2020, 42(3): 233-239. |
[3] | 吕和, 王政, 王婷, 闫雅更, 董凤丽, 杨晓巍, 张琳, 郭晓微, 王红梅, 徐欢. 非活动性肺结核并发慢性阻塞性肺疾病患者营养状况及营养风险分析[J]. 中国防痨杂志, 2020, 42(12): 1310-1312. |
[4] | 周荣真,吴秀丽,王健,杨海,季文斌. 鸟-胞内分枝杆菌肺病伴空洞的CT特征分析[J]. 中国防痨杂志, 2019, 41(9): 1009-1014. |
[5] | 任会丽,陈品儒,陈华,胡锦兴,刘文,方伟军. 鸟-胞内分枝杆菌复合群与龟-脓肿分枝杆菌肺病并发支气管扩张的CT征象比较[J]. 中国防痨杂志, 2019, 41(2): 195-201. |
[6] | 李多,房坤,王珏,周震,吕平欣. 非结核分枝杆菌肺病的CT分型及其临床特征分析(附132例报告)[J]. 中国防痨杂志, 2019, 41(2): 202-209. |
[7] | 黄芳,王勃,赵国连,王海东,党丽云. T淋巴细胞检测对非结核分枝杆菌病的诊断价值[J]. 中国防痨杂志, 2019, 41(12): 1263-1268. |
[8] | 林雪,贾慧军,张晖,任会丽,刘文. 高分辨率CT在非结核分枝杆菌肺病诊治中的价值[J]. 中国防痨杂志, 2018, 40(12): 1361-1365. |
[9] | 朱桂云,李晓霞,康丽菲,陈宁,杨永辉. 肺隐球菌病并发纵隔淋巴结结核误诊一例——病例报告及文献复习[J]. 中国防痨杂志, 2018, 40(11): 1231-1234. |
[10] | 陈步东 吕平欣 吕岩 贺伟 李成海 王东坡 李多. 多层螺旋CT图像后处理技术对肺弥漫性粟粒样病变的诊断价值[J]. 中国防痨杂志, 2017, 39(6): 559-564. |
[11] | 过丽芳 贺伟 王仁贵 李成海 周新华 吕岩 周震 王东坡 赵春生 邱万成. 肺结核并发肺部真菌感染的CT表现特征分析[J]. 中国防痨杂志, 2017, 39(6): 570-575. |
[12] | 黄晓磊 宋晓东 于浩 徐齐峰 路希维. 肺朗格汉斯细胞组织细胞增多症与肺结核的鉴别诊断(附一例报告)[J]. 中国防痨杂志, 2016, 38(10): 881-884. |
[13] | 张占军,姚岚,唐神结. 慢性阻塞性肺疾病合并肺结核患者部分细胞因子水平的表达及其意义[J]. 中国防痨杂志, 2014, 36(3): 189-193. |
[14] | 周震,吕岩,谢汝明,周新华,贺伟,徐金萍. 局限性肺实变病灶的CT表现特点分析[J]. 中国防痨杂志, 2014, 36(3): 149-154. |
[15] | 田葵 沙晋璐 余辉山. 低剂量CT引导下肺穿刺活检的临床应用价值评估[J]. 中国防痨杂志, 2013, 35(2): 111-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||