中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (5): 500-504.doi: 10.19982/j.issn.1000-6621.20210582
收稿日期:
2021-09-28
出版日期:
2022-05-10
发布日期:
2022-05-04
通信作者:
蒋雨薇
E-mail:jiangyuwei2020@163.com
基金资助:
FEI Wan-wan, LU Zhen-hui, HUANG Xing, LI Cui, ZHANG Hui-yong, JIANG Yu-wei()
Received:
2021-09-28
Online:
2022-05-10
Published:
2022-05-04
Contact:
JIANG Yu-wei
E-mail:jiangyuwei2020@163.com
Supported by:
摘要:
肺结核是常见的呼吸道传染疾病,肠道菌群紊乱是肺结核的常见合并症。肠道菌群紊乱会加重肺结核的病理损伤。从中医病机角度,二者之间的关系体现了“肺与大肠相表里”的经络理论、津液理论及气机升降理论。从生物学机制角度,肠道菌群可通过调节宿主固有免疫和适应性免疫,产生抗结核作用的代谢产物以限制肺结核进展;肺结核导致的肠道菌群改变或与血液循环及淋巴循环相关;抗结核药物治疗对肠道菌群的影响或与药物杀菌性相关。肠道菌群的相关疗法对肺结核诊疗具有一定临床价值。通过增加肠道益生菌、粪菌移植、合理使用抗结核药物、改善饮食结构等方法可调节肠道菌群以达到辅助治疗肺结核的目的。本文中,笔者将结合既往文献进行综述。
中图分类号:
费婉婉, 鹿振辉, 黄星, 李翠, 张惠勇, 蒋雨薇. 基于“肺与大肠相表里”探讨肠道菌群与肺结核关系的研究进展[J]. 中国防痨杂志, 2022, 44(5): 500-504. doi: 10.19982/j.issn.1000-6621.20210582
FEI Wan-wan, LU Zhen-hui, HUANG Xing, LI Cui, ZHANG Hui-yong, JIANG Yu-wei. Research progress on the correlation of gut microbiota with and pulmonary tuberculosis based on the theory of exterior and interior of lung and large intestine[J]. Chinese Journal of Antituberculosis, 2022, 44(5): 500-504. doi: 10.19982/j.issn.1000-6621.20210582
[1] |
周玲玲. 300例肺结核病患者抗结核药物不良反应的调查分析. 当代医学, 2021, 27(15):159-160. doi: 10.3969/j.issn.1009-4393.2021.15.063.
doi: 10.3969/j.issn.1009-4393.2021.15.063 |
[2] |
杨元利, 张永峰, 窦权利 . 老年肺结核病130例临床分析. 陕西医学杂志, 2019, 48(12): 1691-1693. doi: 10.3969/j.issn.1000-7377.2019.12.032.
doi: 10.3969/j.issn.1000-7377.2019.12.032 |
[3] |
Luo M, Liu Y, Wu P, et al. Alternation of Gut Microbiota in Patients with Pulmonary Tuberculosis. Front Physiol, 2017, 8: 822. doi: 10.3389/fphys.2017.00822.
doi: 10.3389/fphys.2017.00822 URL |
[4] |
Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for Tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep, 2017, 7(1): 10767. doi: 10.1038/s41598-017-10346-6.
doi: 10.1038/s41598-017-10346-6 pmid: 28883399 |
[5] |
Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017, 5(1): 71. doi: 10.1186/s40168-017-0286-2.
doi: 10.1186/s40168-017-0286-2 URL |
[6] |
Hu Y, Feng Y, Wu J, et al. The Gut Microbiome Signatures Discriminate Healthy From Pulmonary Tuberculosis Patients. Front Cell Infect Microbiol, 2019, 9: 90. doi: 10.3389/fcimb.2019.00090.
doi: 10.3389/fcimb.2019.00090 URL |
[7] |
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect, 2019, 78(4): 317-322. doi: 10.1016/j.jinf.2018.08.006.
doi: 10.1016/j.jinf.2018.08.006 URL |
[8] |
Maji A, Misra R, Dhakan DB, et al. Gut microbiome contribu-tes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol, 2018, 20(1): 402-419. doi: 10.1111/1462-2920.14015.
doi: 10.1111/1462-2920.14015 URL |
[9] |
Khan N, Vidyarthi A, Nadeem S, et al. Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Front Immunol, 2016, 7: 529. doi: 10.3389/fimmu.2016.00529.
doi: 10.3389/fimmu.2016.00529 |
[10] |
Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol, 2004, 12(12): 562-568. doi: 10.1016/j.tim.2004.10.008.
doi: 10.1016/j.tim.2004.10.008 pmid: 15539116 |
[11] |
Arnold IC, Hutchings C, Kondova I, et al. Helicobacter hepaticus infection in BALB/c mice abolishes subunit-vaccine-induced protection against M.tuberculosis. Vaccine, 2015, 33(15): 1808-1814. doi: 10.1016/j.vaccine.2015.02.041.
doi: 10.1016/j.vaccine.2015.02.041 URL |
[12] |
Marsland BJ, Trompette A, Gollwitzer ES. The Gut-Lung Axis in Respiratory Disease. Ann Am Thorac Soc, 2015, 12 Suppl 2: S150-S156. doi: 10.1513/AnnalsATS.201503-133AW.
doi: 10.1513/AnnalsATS.201503-133AW |
[13] |
He Y, Wen Q, Yao F, et al. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol, 2017, 43(1): 81-95. doi: 10.1080/1040841X.2016.1176988.
doi: 10.1080/1040841X.2016.1176988 URL |
[14] |
McDermott MR, Clark DA, Bienenstock J. Evidence for a common mucosal immunologic system.Ⅱ. Influence of the estrous cycle on B immunoblast migration into genital and intestinal tissues. J Immunol, 1980, 124(6): 2536-2539.
pmid: 6966293 |
[15] | 杜丽娟, 王玲, 李风森. 从哮喘黏膜免疫中T淋巴细胞表达的研究阐释“肺与大肠相表里”理论. 辽宁中医杂志, 2012, 39(8):1620-1622. |
[16] |
Sugawara I, Udagawa T, Yamada H. Rat neutrophils prevent the development of tuberculosis. Infect Immun, 2004, 72(3): 1804-1806. doi: 10.1128/IAI.72.3.1804-1806.2004.
doi: 10.1128/IAI.72.3.1804-1806.2004 pmid: 14977991 |
[17] |
Martineau AR, Newton SM, Wilkinson KA, et al. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest, 2007, 117(7): 1988-1994. doi: 10.1172/JCI31097.
doi: 10.1172/JCI31097 pmid: 17607367 |
[18] |
Clarke TB, Davis KM, Lysenko ES, et al. Recognition of peptidoglycan from the microbiota by Nod 1 enhances systemic innate immunity. Nat Med, 2010, 16(2): 228-231. doi: 10.1038/nm.2087.
doi: 10.1038/nm.2087 URL |
[19] |
Balfour A, Schutz C, Goliath R, et al. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol, 2021, 12: 648216. doi: 10.3389/fimmu.2021.648216.
doi: 10.3389/fimmu.2021.648216 URL |
[20] |
Zhang N, Luo X, Huang J, et al. The landscape of different molecular modules in an immune microenvironment during tuberculosis infection. Brief Bioinform, 2021, 22(5): bbab071. doi: 10.1093/bib/bbab071.
doi: 10.1093/bib/bbab071 URL |
[21] |
Le Bourhis L, Martin E, Péguillet I, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol, 2010, 11(8): 701-708. doi: 10.1038/ni.1890.
doi: 10.1038/ni.1890 pmid: 20581831 |
[22] |
Dumas A, Corral D, Colom A, et al. The Host Microbiota Contributes to Early Protection Against Lung Colonization by Mycobacterium tuberculosis. Front Immunol, 2018, 9: 2656. doi: 10.3389/fimmu.2018.02656.
doi: 10.3389/fimmu.2018.02656 URL |
[23] |
Flynn JL, Chan J, Lin PL. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol, 2011, 4(3): 271-278. doi: 10.1038/mi.2011.14.
doi: 10.1038/mi.2011.14 pmid: 21430653 |
[24] |
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392(6673): 245-252. doi: 10.1038/32588.
doi: 10.1038/32588 URL |
[25] |
Negi S, Pahari S, Bashir H, et al. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol, 2019, 10: 1142. doi: 10.3389/fimmu.2019.01142.
doi: 10.3389/fimmu.2019.01142 URL |
[26] |
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995, 155(3): 1151-1164.
pmid: 7636184 |
[27] |
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol, 2012, 30: 531-564. doi: 10.1146/annurev.immunol.25.022106.141623.
doi: 10.1146/annurev.immunol.25.022106.141623 pmid: 22224781 |
[28] |
Guyot-Revol V, Innes J A, Hackforth S, et al. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med, 2006, 173(7):803-810. doi: 10.1164/rccm.200508-1294OC.
doi: 10.1164/rccm.200508-1294OC URL |
[29] |
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014, 20(2): 159-166. doi: 10.1038/nm.3444.
doi: 10.1038/nm.3444 pmid: 24390308 |
[30] |
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480): 451-455. doi: 10.1038/nature12726.
doi: 10.1038/nature12726 URL |
[31] |
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A, 2010, 107(27): 12204-12209. doi: 10.1073/pnas.0909122107.
doi: 10.1073/pnas.0909122107 pmid: 20566854 |
[32] |
Negatu DA, Liu JJJ, Zimmerman M, et al. Whole-Cell Screen of Fragment Library Identifies Gut Microbiota Metabolite Indole Propionic Acid as Antitubercular. Antimicrob Agents Chemother, 2018, 62(3): e01571-17. doi: 10.1128/AAC.01571-17.
doi: 10.1128/AAC.01571-17 |
[33] |
Morollo AA, Eck MJ. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Biol, 2001, 8(3): 243-247. doi: 10.1038/84988.
doi: 10.1038/84988 pmid: 11224570 |
[34] |
Bashiri G, Johnston JM, Evans GL, et al. Structure and inhibition of subunit Ⅰ of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 11): 2297-2308. doi: 10.1107/S1399004715017216.
doi: 10.1107/S1399004715017216 URL |
[35] |
Negatu DA, Yamada Y, Xi Y, et al. Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in Mycobacterium tuberculosis. mBio, 2019, 10(2): e02781-18. doi: 10.1128/mBio.02781-18.
doi: 10.1128/mBio.02781-18 |
[36] |
Sze MA, Tsuruta M, Yang SW, et al. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One, 2014, 9(10): e111228. doi: 10.1371/journal.pone.0111228.
doi: 10.1371/journal.pone.0111228 URL |
[37] |
Wang J, Tian Z. How lung infection leads to gut injury. Oncotarget, 2015, 6(40): 42394-42395. doi: 10.18632/oncotarget.6470.
doi: 10.18632/oncotarget.6470 URL |
[38] |
白宇, 原林, 黄泳, 等. 经络的解剖学发现--筋膜学新理论. 世界科学技术--中医药现代化, 2010, 12(1): 20-24. doi: 10.3969/j.issn.1674-3849.2010.01.005.
doi: 10.3969/j.issn.1674-3849.2010.01.005 |
[39] |
王春雷, 原林, 王军 , 等. 人体筋膜重建经线与经典经线走行路线对比. 解剖学杂志, 2007, 30(3): 340-343. doi: 10.3969/j.issn.1001-1633.2007.03.022.
doi: 10.3969/j.issn.1001-1633.2007.03.022 |
[40] |
原林, 焦培峰, 唐雷 , 等. 中医经络理论的物质基础--结缔组织、筋膜和自体监控系统(筋膜学). 中国基础科学, 2005, 7(3): 44-47. doi: 10.3969/j.issn.1009-2412.2005.03.014.
doi: 10.3969/j.issn.1009-2412.2005.03.014 |
[41] | 赵吉平, 刘兵. 肺与大肠表里关系的经、穴互通基础研究. 北京中医药大学学报, 2010, 33(9):592-594. |
[42] | 曾祥国. 从粘液组织化学变化试论肺与大肠的阴阳表里关系. 四川医学, 1982, 3(3):129-132. |
[43] |
牛春雨, 李继承, 赵自刚 , 等. 肠系膜淋巴管结扎对大鼠急性肺损伤的影响. 中国病理生理杂志, 2006, 22(8):1566-1570. doi: 10.3321/j.issn:1000-4718.2006.08.025.
doi: 10.3321/j.issn:1000-4718.2006.08.025 |
[44] |
Tulic MK, Piche T, Verhasselt V. Lung-gut cross-talk: evidence, mechanisms and implications for the mucosal inflammatory diseases. Clin Exp Allergy, 2016, 46(4): 519-528. doi: 10.1111/cea.12723.
doi: 10.1111/cea.12723 pmid: 26892389 |
[45] |
Ahmadi Badi S, Khatami SH, Irani SH, et al. Induction Effects of Bacteroides fragilis Derived Outer Membrane Vesicles on Toll Like Receptor 2, Toll Like Receptor 4 Genes Expression and Cytokines Concentration in Human Intestinal Epithelial Cells. Cell J, 2019, 21(1): 57-61. doi: 10.22074/cellj.2019.5750.
doi: 10.22074/cellj.2019.5750 pmid: 30507089 |
[46] |
Schretter CE, Vielmetter J, Bartos I, et al. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature, 2018, 563(7731): 402-406. doi: 10.1038/s41586-018-0634-9.
doi: 10.1038/s41586-018-0634-9 URL |
[47] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019, 12(3): 772-783. doi: 10.1038/s41385-019-0147-3.
doi: 10.1038/s41385-019-0147-3 URL |
[48] |
Huang Y, Yang Z, McGowan J, et al. Regulation of IgE Responses by γδ T Cells. Curr Allergy Asthma Rep, 2015, 15(4): 13. doi: 10.1007/s11882-015-0519-z.
doi: 10.1007/s11882-015-0519-z URL |
[49] |
Glanville N, Message SD, Walton RP, et al. γδT cells suppress inflammation and disease during rhinovirus-induced asthma exacerbations. Mucosal Immunol, 2013, 6(6): 1091-1100. doi: 10.1038/mi.2013.3.
doi: 10.1038/mi.2013.3 pmid: 23385428 |
[50] | 王蓓, 张文, 方邦江. 肠道菌群调控黏膜免疫与脓毒症的发病机制. 生命的化学, 2019, 39(6): 1153-1158. |
[51] |
Barreto ML, Pereira SM, Ferreira AA. BCG vaccine: efficacy and indications for vaccination and revaccination. J Pediatr (Rio J), 2006, 82(3 Suppl): S45-S54. doi: 10.2223/JPED.1499.
doi: 10.2223/JPED.1499 |
[52] |
Gopal R, Rangel-Moreno J, Slight S, et al. Interleukin-17-dependent CXCL 13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol, 2013, 6(5): 972-984. doi: 10.1038/mi.2012.135.
doi: 10.1038/mi.2012.135 pmid: 23299616 |
[1] | 孙晴, 廖鑫磊, 王晨倩, 姜广路, 董玲玲, 王芬, 赵立平, 黄海荣, 王桂荣. GeneXpert MTB/RIF阳性RNA聚合酶β亚基基因突变的结核病患者中利福平耐药决定区突变特征研究[J]. 中国防痨杂志, 2022, 44(4): 349-353. |
[2] | 苏丹, 车南颖, 欧喜超, 赵颖丽, 李琨, 陈学敬, 林海峰, 穆晶, 黄海荣. 不同细菌学与病理学检查技术对骨关节结核诊断的效能研究[J]. 中国防痨杂志, 2022, 44(4): 362-367. |
[3] | 俞珊, 李志明, 杨荔慧, 王涛. 中西医结合姑息疗法治疗难治性结核病四例[J]. 中国防痨杂志, 2022, 44(4): 416-420. |
[4] | 谌蒙蒙, 董静, 孙琦, 黄麦玲, 丁则昱, 史雨婷, 贾红彦, 杜博平, 魏荣荣, 邢爱英, 张宗德, 潘丽萍. 基于基因芯片的miRNA表达差异在结核性脑膜炎与病毒性脑膜炎诊断中的价值[J]. 中国防痨杂志, 2022, 44(3): 264-272. |
[5] | 张黎娟, 张华, 王霞芳, 施美华, 冯彦军, 张建平, 唐佩军. 结核特异性抗原与CD4+ T细胞计数比值对AIDS合并肺结核的辅助诊断价值[J]. 中国防痨杂志, 2022, 44(3): 284-288. |
[6] | 王少华, 赵国连, 王佩, 谈小文, 崔晓利, 康磊, 党丽云. 结核分枝杆菌利福平基因型药敏和表型药敏检测结果不一致原因分析[J]. 中国防痨杂志, 2022, 44(2): 169-173. |
[7] | 王黎霞. 织密五张患者发现网 精准掌握结核病疫情[J]. 中国防痨杂志, 2022, 44(1): 1-3. |
[8] | 易一行, 喻容, 石国民, 马小华, 肖四方, 税剑, 范任华, 向延根. 基于16S rRNA V4区高通量测序的初治菌阳肺结核患者肠道菌群构成与表型分析[J]. 中国防痨杂志, 2021, 43(9): 939-946. |
[9] | 马婷婷, 任斐, 马进宝, 杨翰. 异烟肼耐药肺结核患者对丙硫异烟胺和对氨基水杨酸的耐药情况分析[J]. 中国防痨杂志, 2021, 43(9): 961-964. |
[10] | 夏辉, 赵雁林. 世界卫生组织《关于更新使用结核分枝杆菌及其耐药性核酸扩增检测技术的建议》的启示[J]. 中国防痨杂志, 2021, 43(8): 761-765. |
[11] | 杨婷婷, 高谦. 构建基于全基因组数据的结核病耐药及传播监测网络[J]. 中国防痨杂志, 2021, 43(7): 645-648. |
[12] | 赵国连, 谈小文, 崔晓利, 党丽云. 培养滤液MPT64抗原检测阴性结核分枝杆菌的基因多态性分析[J]. 中国防痨杂志, 2021, 43(7): 659-663. |
[13] | 易俊莉, 杨新宇, 陈昊, 赵琰枫, 陈双双, 张洁, 丁北川, 代小伟, 孙闪华, 武文清, 李传友. 1156株结核分枝杆菌临床分离株耐药情况分析[J]. 中国防痨杂志, 2021, 43(7): 677-681. |
[14] | 曹盼, 梁矿立, 袁吉欣, 李永波, 陈瑞, 张志飞, 仵倩红. 初治与复治空洞性利福平耐药肺结核患者的CT表现分析[J]. 中国防痨杂志, 2021, 43(7): 694-701. |
[15] | 林建, 赵永, 戴志松, 魏淑贞, 林淑芳. 福建省261株非结核分枝杆菌的菌种鉴定分析[J]. 中国防痨杂志, 2021, 43(6): 590-595. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||