[1] |
王明哲, 王乐, 祖丽呼玛尔·艾尔肯, 等. 2011—2020年新疆普通肺结核患者流行病学特征分析. 预防医学情报杂志, 2022, 38(10): 1334-1339,1345.
|
[2] |
Coscolla M, Gagneux S, Menardo F, et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb Genom, 2021, 7(2):000477. doi:10.1099/mgen.0.000477.
|
[3] |
Ngabonziza JCS, Loiseau C, Marceau M, et al. A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nat Commun, 2020, 11(1): 2917. doi:10.1038/s41467-020-16626-6.
|
[4] |
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol, 2018, 16(4): 202-213. doi:10.1038/nrmicro.2018.8.
|
[5] |
Pasipanodya JG, Moonan PK, Vecino E, et al. Allopatric tuberculosis host-pathogen relationships are associated with greater pulmonary impairment. Infect Genet Evol, 2013, 16: 433-440. doi:10.1016/j.meegid.2013.02.015.
pmid: 23501297
|
[6] |
Stucki D, Brites D, Jeljeli L, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet, 2016, 48(12): 1535-1543. doi:10.1038/ng.3704.
pmid: 27798628
|
[7] |
Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590): 850-859. doi:10.1098/rstb.2011.0316.
|
[8] |
Mchenry ML, Bartlett J, Igo RP Jr, et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?. PLoS Genet, 2020, 16(4): e1008728. doi:10.1371/journal.pgen.1008728.
|
[9] |
Click ES, Moonan PK, Winston CA, et al. Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis, 2012, 54(2): 211-219. doi:10.1093/cid/cir788.
|
[10] |
Saelens JW, Sweeney MI, Viswanathan G, et al. An ancestral mycobacterial effector promotes dissemination of infection. Cell, 2022, 185(24): 4507-4525.e18. doi:10.1016/j.cell.2022.10.019.
pmid: 36356582
|
[11] |
Du DH, Geskus RB, Zhao Y, et al. The effect of M.tuberculosis lineage on clinical phenotype. medRxiv, 2023. doi:10.1101/2023.03.14.23287284.
|
[12] |
洪创跃, 杨婷婷, 李金莉, 等. 深圳市耐多药结核分枝杆菌耐药基因突变特征分析. 中国防痨杂志, 2020, 42(6): 583-589. doi:10.3969/j.issn.1000-6621.2020.06.009.
|
[13] |
Liu Q, Luo T, Dong X, et al. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage. Emerg Microbes Infect, 2016, 5(2): e14. doi:10.1038/emi.2016.14.
|
[14] |
Yang T, Gan M, Liu Q, et al. SAM-TB: a whole genome sequencing data analysis website for detection of Mycobacterium tuberculosis drug resistance and transmission. Brief Bioinform, 2022, 23(2):bbac030. doi:10.1093/bib/bbac030.
|
[15] |
Behr MA, Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, 284(5419): 1520-1523. doi:10.1126/science.284.5419.1520.
pmid: 10348738
|
[16] |
Coll F, McNerney R, Guerra-Assunção JA, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun, 2014, 5: 4812. doi:10.1038/ncomms5812.
|
[17] |
van der Werf MJ, Ködmön C. Whole-Genome Sequencing as Tool for Investigating International Tuberculosis Outbreaks: A Systematic Review. Front Public Health, 2019, 7: 87. doi:10.3389/fpubh.2019.00087.
pmid: 31058125
|
[18] |
Gardy JL, Johnston JC, Ho Sui SJ, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med, 2011, 364(8): 730-739. doi:10.1056/NEJMoa1003176.
|
[19] |
Luo T, Yang C, Peng Y, et al. Whole-genome sequencing to detect recent transmission of Mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis (Edinb), 2014, 94(4): 434-440. doi:10.1016/j.tube.2014.04.005.
|
[20] |
Morey M, Fernández-Marmiesse A, Castiñeiras D, et al. A glimpse into past, present, and future DNA sequencing. Mol Genet Metab, 2013, 110(1/2): 3-24. doi:10.1016/j.ymgme.2013.04.024.
|
[21] |
Baker LV, Brown TJ, Maxwell O, et al. Molecular analysis of isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC-46A polymorphism. Antimicrob Agents Chemother, 2005, 49(4): 1455-1464. doi:10.1128/AAC.49.4.1455-1464.2005.
|
[22] |
陈海霞, 贾俊楠, 李卫民, 等. 结核分枝杆菌单核苷酸多态性特征的分析. 疾病监测, 2017, 32(4): 332-336. doi:10.3784/j.issn.1003-9961.2017.04.018.
|
[23] |
Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis, 2007, 7(5): 328-337. doi:10.1016/S1473-3099(07)70108-1.
|
[24] |
Correa-Macedo W, Cambri G, Schurr E. The Interplay of Human and Mycobacterium Tuberculosis Genomic Variability. Front Genet, 2019, 10: 865. doi:10.3389/fgene.2019.00865.
pmid: 31620169
|
[25] |
Coscolla M. Biological and Epidemiological Consequences of MTBC Diversity. Adv Exp Med Biol, 2017, 1019: 95-116. doi:10.1007/978-3-319-64371-7_5.
pmid: 29116631
|
[26] |
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. Infect Genet Evol, 2020, 81: 104204. doi:10.1016/j.meegid.2020.104204.
|