中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (5): 512-516.doi: 10.19982/j.issn.1000-6621.20210686
收稿日期:
2021-11-30
出版日期:
2022-05-10
发布日期:
2022-05-04
通信作者:
杨国平
E-mail:qjygpp33@163.com
基金资助:
LI Yu-jie, YANG Yu-ting, YANG Guo-ping()
Received:
2021-11-30
Online:
2022-05-10
Published:
2022-05-04
Contact:
YANG Guo-ping
E-mail:qjygpp33@163.com
Supported by:
摘要:
糖尿病是机体罹患结核病或进展为重症结核病的危险因素之一,其高糖状态引发的炎性环境可导致机体抗结核感染固有免疫细胞吞噬功能受损、相关抗原提呈细胞递呈延迟。继而适应性免疫应答诱导分化的异常会影响机体CD4+ 及CD8+ T细胞的抗结核分枝杆菌感染作用,导致相关细胞因子分泌异常并最终引起机体免疫功能紊乱,加速结核感染进程。为此,笔者就糖尿病对机体抗结核感染的固有免疫机制和适应性免疫反应影响的研究进展进行综述,为糖尿病患者的抗炎治疗及制定合理的免疫治疗策略提供基础。
中图分类号:
李玉洁, 杨雨婷, 杨国平. 糖尿病合并结核感染的固有免疫和适应性免疫反应的研究进展[J]. 中国防痨杂志, 2022, 44(5): 512-516. doi: 10.19982/j.issn.1000-6621.20210686
LI Yu-jie, YANG Yu-ting, YANG Guo-ping. Research progress of innate immunity and adaptive immune response in diabetic patients complicated with tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2022, 44(5): 512-516. doi: 10.19982/j.issn.1000-6621.20210686
[1] | World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[2] |
Al-Rifai RH, Pearson F, Critchley JA, et al. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 2017, 12(11): e0187967. doi: 10.1371/journal.pone.0187967.
doi: 10.1371/journal.pone.0187967 URL |
[3] |
Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis. J Clin Med, 2019, 8(12): 2219. doi: 10.3390/jcm8122219.
doi: 10.3390/jcm8122219 |
[4] |
毛毅, 范琳, 刘勇. 肺结核并发糖尿病的诊治研究进展. 中国防痨杂志, 2019, 41(12): 1325-1329. doi: 10.3969/j.issn.1000-6621.2019.12.015.
doi: 10.3969/j.issn.1000-6621.2019.12.015 |
[5] |
林岩, 邓国防. 糖尿病并发结核病治疗中多学科合作应注意的问题. 中国防痨杂志, 2021, 43(7): 649-652. doi: 10.3969/j.issn.1000-6621.2021.7.002.
doi: 10.3969/j.issn.1000-6621.2021.7.002 |
[6] |
Masood KI, Irfan M, Masood Q, et al. Latent M.tuberculosis infection is associated with increased inflammatory cytokine and decreased suppressor of cytokine signalling (SOCS)-3 in the diabetic host. Scand J Immunol, 2021: e13134. doi: 10.1111/sji.13134.
doi: 10.1111/sji.13134 |
[7] |
Mo J, Jin R, Yan Q, et al. Quantitative analysis of glycation and its impact on antigen binding. MAbs, 2018, 10(3): 406-415. doi: 10.1080/19420862.2018.1438796.
doi: 10.1080/19420862.2018.1438796 URL |
[8] |
Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis (Review). J Clin Med, 2019, 8(12): 2219. doi: 10.3390/jcm8122219.
doi: 10.3390/jcm8122219 URL |
[9] |
Arias L, Goig GA, Cardona P, et al. Influence of Gut Microbiota on Progression to Tuberculosis Generated by High Fat Diet-Induced Obesity in C3HeB/FeJ Mice. Front Immunol, 2019, 10: 2464. doi: 10.3389/fimmu.2019.02464.
doi: 10.3389/fimmu.2019.02464 URL |
[10] |
Carlberg C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front Immunol, 2019, 10: 2211. doi: 10.3389/fimmu.2019.02211.
doi: 10.3389/fimmu.2019.02211 pmid: 31572402 |
[11] |
Zhao X, Yuan Y, Lin Y, et al. Vitamin D status of tuberculosis patients with diabetes mellitus in different economic areas and associated factors in China. PLoS One, 2018, 13(11): e0206372. doi: 10.1371/journal.pone.0206372.
doi: 10.1371/journal.pone.0206372 URL |
[12] |
Kumar NP, Moideen K, Bhootra Y, et al. Elevated circulating levels of monocyte activation markers among tuberculosis patients with diabetes co-morbidity. Immunology, 2019, 156(3): 249-258. doi: 10.1111/imm.13023.
doi: 10.1111/imm.13023 |
[13] |
Torres M, Herrera MT, Fabián-San-Miguel G, et al. The Intracellular Growth of M.tuberculosis Is More Associated with High Glucose Levels Than with Impaired Responses of Monocytes from T2D Patients. J Immunol Res, 2019, 2019: 1462098. doi: 10.1155/2019/1462098.
doi: 10.1155/2019/1462098 |
[14] |
Kundu J, Verma A, Verma I, et al. Proteomic changes in Mycobacterium tuberculosis H37Rv under hyperglycemic conditions favour its growth through altered expression of Tgs3(Rv3234c) and supportive proteins (Rv0547c, AcrA1 and Mpa). Tuberculosis (Edinb), 2019, 115: 154-160. doi: 10.1016/j.tube.2019.03.006.
doi: 10.1016/j.tube.2019.03.006 URL |
[15] |
Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, et al. Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz, 2018, 113(4): e170326. doi: 10.1590/0074-02760170326.
doi: 10.1590/0074-02760170326 |
[16] |
Martinez N, Ketheesan N, West K, et al. Impaired Recognition of Mycobacterium tuberculosis by Alveolar Macrophages From Diabetic Mice. J Infect Dis, 2016, 214(11): 1629-1637. doi: 10.1093/infdis/jiw436.
doi: 10.1093/infdis/jiw436 pmid: 27630197 |
[17] |
Alim MA, Sikder S, Sathkumara H, et al. Dysregulation of key cytokines may contribute to increased susceptibility of diabetic mice to Mycobacterium bovis BCG infection. Tuberculosis (Edinb), 2019, 115: 113-120. doi: 10.1016/j.tube.2019.02.005.
doi: 10.1016/j.tube.2019.02.005 URL |
[18] |
Vance J, Santos A, Sadofsky L, et al. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung, 2019, 197(1): 89-94. doi: 10.1007/s00408-018-0181-z.
doi: 10.1007/s00408-018-0181-z URL |
[19] |
Vrieling F, Wilson L, Rensen PCN, et al. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathog, 2019, 15(4): e1007724. doi: 10.1371/journal.ppat.1007724.
doi: 10.1371/journal.ppat.1007724 URL |
[20] |
Bizzell E, Sia JK, Quezada M, et al. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses. J Leukoc Biol, 2018, 103(4): 739-748. doi: 10.1002/JLB.4A0917-363RR.
doi: 10.1002/JLB.4A0917-363RR URL |
[21] |
Kumar NP, Moideen K, Dhakshinraj SD, et al. Profiling leucocyte subsets in tuberculosis-diabetes co-morbidity. Immunology, 2015, 146(2): 243-250. doi: 10.1111/imm.12496.
doi: 10.1111/imm.12496 URL |
[22] |
Monroy-Mérida G, Guzmán-Beltrán S, Hernández F, et al. High Glucose Concentrations Impair the Processing and Presentation of Mycobacterium tuberculosis Antigens In Vitro. Biomolecules, 2021, 11(12): 1763. doi: 10.3390/biom11121763.
doi: 10.3390/biom11121763 URL |
[23] |
Gilardini Montani MS, Granato M, Cuomo L, et al. High glucose and hyperglycemic sera from type 2 diabetic patients impair DC differentiation by inducing ROS and activating Wnt/β-catenin and p38 MAPK. Biochim Biophys Acta, 2016, 1862(4): 805-813. doi: 10.1016/j.bbadis.2016.01.001.
doi: S0925-4439(16)00002-8 pmid: 26769359 |
[24] |
Kumar NP, Moideen K, Viswanathan V, et al. Effect of anti-tuberculosis treatment on the systemic levels of tissue inhibitors of metalloproteinases in tuberculosis-Diabetes co-morbidity. J Clin Tuberc Other Mycobact Dis, 2021, 23: 100237. doi: 10.1016/j.jctube.2021.100237.
doi: 10.1016/j.jctube.2021.100237 |
[25] |
Ayelign B, Negash M, Genetu M, et al. Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res, 2019, 2019: 6196532. doi: 10.1155/2019/6196532.
doi: 10.1155/2019/6196532 |
[26] |
Chumburidze-Areshidze N, Kezeli T, Avaliani Z, et al. The Relationship Between Type-2 Diabetes and Tuberculosis. Georgian Med News, 2020(300): 69-74.
pmid: 32383705 |
[27] |
Cheekatla SS, Tripathi D, Venkatasubramanian S, et al. NK-CD11c+ Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection. PLoS Pathog, 2016, 12(10): e1005972. doi: 10.1371/journal.ppat.1005972.
doi: 10.1371/journal.ppat.1005972 URL |
[28] |
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol, 2019, 10: 2583. doi: 10.3389/fimmu.2019.02583.
doi: 10.3389/fimmu.2019.02583 pmid: 31736982 |
[29] |
Wang X, Ma A, Han X, et al. T Cell Profile was Altered in Pulmonary Tuberculosis Patients with Type 2 Diabetes. Med Sci Monit, 2018, 24: 636-642. doi: 10.12659/msm.905651.
doi: 10.12659/msm.905651 URL |
[30] |
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020, 77(10): 1859-1878. doi: 10.1007/s00018-019-03353-5.
doi: 10.1007/s00018-019-03353-5 URL |
[31] |
Radhakrishnan RK, Thandi RS, Tripathi D, et al. BCG vaccination reduces the mortality of Mycobacterium tuberculosis-infected type 2 diabetes mellitus mice. JCI Insight, 2020, 5(5): e133788. doi: 10.1172/jci.insight.133788.
doi: 10.1172/jci.insight.133788 URL |
[32] |
Kathamuthu GR, Kumar NP, Moideen K, et al. Decreased Frequencies of Gamma/Delta T Cells Expressing Th1/Th17 Cytokine, Cytotoxic, and Immune Markers in Latent Tuberculosis-Diabetes/Pre-Diabetes Comorbidity. Front Cell Infect Microbiol, 2021, 11: 756854. doi: 10.3389/fcimb.2021.756854.
doi: 10.3389/fcimb.2021.756854 URL |
[33] |
Kumar NP, Moideen K, Banurekha VV, et al. Modulation of Th1/Tc1 and Th17/Tc17 responses in pulmonary tuberculosis by IL-20 subfamily of cytokines. Cytokine, 2018, 108: 190-196. doi: 10.1016/j.cyto.2018.04.005.
doi: 10.1016/j.cyto.2018.04.005 URL |
[34] |
Kumar NP, Moideen K, George PJ, et al. Impaired Cytokine but Enhanced Cytotoxic Marker Expression in Mycobacterium tuberculosis-Induced CD8+ T Cells in Individuals With Type 2 Diabetes and Latent Mycobacterium tuberculosis Infection. J Infect Dis, 2016, 213(5): 866-870. doi: 10.1093/infdis/jiv484.
doi: 10.1093/infdis/jiv484 URL |
[35] |
Ponnana M, Sivangala R, Joshi L, et al. IL-6 and IL-18 cytokine gene variants of pulmonary tuberculosis patients with co-morbid diabetes mellitus and their household contacts in Hyderabad. Gene, 2017, 627: 298-306. doi: 10.1016/j.gene.2017.06.046.
doi: 10.1016/j.gene.2017.06.046 URL |
[36] |
Meenakshi P, Ramya S, Lavanya J, et al. Effect of IFN-γ, IL-12 and IL-10 cytokine production and mRNA expression in tuberculosis patients with diabetes mellitus and their household contacts. Cytokine, 2016, 81: 127-136. doi: 10.1016/j.cyto.2016.03.009.
doi: 10.1016/j.cyto.2016.03.009 pmid: 27002606 |
[37] |
Bright MR, Curtis N, Messina NL. The role of antibodies in Bacille Calmette Guérin-mediated immune responses and protection against tuberculosis in humans: A systematic review. Tuberculosis (Edinb), 2021, 131: 101947. doi: 10.1016/j.tube.2020.101947.
doi: 10.1016/j.tube.2020.101947 URL |
[38] |
SantaCruz-Calvo S, Bharath L, Pugh G, et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol, 2022, 18(1): 23-42. doi: 10.1038/s41574-021-00575-1.
doi: 10.1038/s41574-021-00575-1 URL |
[39] |
Daryabor G, Atashzar MR, Kabelitz D, et al. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol, 2020, 11: 1582. doi: 10.3389/fimmu.2020.01582.
doi: 10.3389/fimmu.2020.01582 URL |
[1] | 陈志, 梁建琴. 结核病重症患者营养评估及营养支持治疗专家共识[J]. 中国防痨杂志, 2022, 44(5): 421-432. |
[2] | 刘二勇, 陈明亭, 周林, 孟庆琳, 王静. 开展患者关怀行动提升结核病防治综合服务质量[J]. 中国防痨杂志, 2022, 44(5): 433-437. |
[3] | 何翼君, 曹雪芳, 高磊. 《结核菌素皮肤试验-γ干扰素释放试验两步法的操作技术规范》解读[J]. 中国防痨杂志, 2022, 44(5): 438-441. |
[4] | 吴明歧, 闫世春, 刘玉琴, 郭鑫, 王美杰, 田晶, 侯绍英. 基于同位素标记的相对和绝对定量的糖尿病并发肺结核患者血浆蛋白质组学研究[J]. 中国防痨杂志, 2022, 44(5): 442-449. |
[5] | 戴广明, 王芬, 曹廷明, 褚洪迁, 黄海荣, 孙照刚. 实时荧光定量PCR检测不同结核标本及其联合玻璃珠磨菌法检测价值的初步研究[J]. 中国防痨杂志, 2022, 44(5): 450-454. |
[6] | 段利瑶, 凌彦博, 梁艳, 史迎昌, 王兰, 赵冠人, 刘军, 郑越, 吴雪琼. 牛贝消核提取物血清药物化学的初步研究[J]. 中国防痨杂志, 2022, 44(5): 455-459. |
[7] | 王明哲, 刘年强, 凯德丽艳·阿布都外力, 王新旗, 黄飞. 主动发现对南疆四地州肺结核疫情的影响[J]. 中国防痨杂志, 2022, 44(5): 460-466. |
[8] | 靳晓伟, 李娅茹, 段海霞, 魏晓慧, 裴依依, 李滢, 靳鸿建. 河南省新密市重点地区的重点人群肺结核主动筛查研究[J]. 中国防痨杂志, 2022, 44(5): 467-472. |
[9] | 胡远莲, 邓玲, 艾萍, 贾雪娇, 陈巍, 张东彦, 薛晓, 吴倩宇, 谢俊卿. 肺结核患者社区治疗管理调查分析[J]. 中国防痨杂志, 2022, 44(5): 473-477. |
[10] | 龚德华, 唐益, 谭文倩, 王巧智. 2011—2020年湖南省学生结核病时空特征分析[J]. 中国防痨杂志, 2022, 44(5): 478-483. |
[11] | 熊姿, 谢赐福, 宋丽新, 王孝君, 田斌, 黄竹林, 徐祖辉, 张锡兴, 白丽琼. 2011—2020年长沙市MTB/HIV双重感染流行特征分析[J]. 中国防痨杂志, 2022, 44(5): 484-488. |
[12] | 刘媛, 剧猛, 左蕾, 张耀辉, 黄毅. 结核性胸膜炎合并2型糖尿病患者外周血及胸腔积液结核感染T细胞斑点试验检测结果的对比研究[J]. 中国防痨杂志, 2022, 44(5): 489-493. |
[13] | 徐静, 罗萍, 贺晓新. 肺结核合并糖尿病与单纯肺结核患者流行特征对比分析[J]. 中国防痨杂志, 2022, 44(5): 494-499. |
[14] | 费婉婉, 鹿振辉, 黄星, 李翠, 张惠勇, 蒋雨薇. 基于“肺与大肠相表里”探讨肠道菌群与肺结核关系的研究进展[J]. 中国防痨杂志, 2022, 44(5): 500-504. |
[15] | 吴超玲, 邓国防, 付亮, 袁小亮. 呼出气挥发性有机物在肺部感染性疾病诊断中的研究进展[J]. 中国防痨杂志, 2022, 44(5): 505-511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||