中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (2): 218-223.doi: 10.19982/j.issn.1000-6621.20240369
收稿日期:
2024-08-28
出版日期:
2025-02-10
发布日期:
2025-02-08
通信作者:
李佩波,Email: 157318851@qq.com
基金资助:
You Chengdong1, Zhu Ling2, Li Peibo3()
Received:
2024-08-28
Online:
2025-02-10
Published:
2025-02-08
Contact:
Li Peibo, Email: 157318851@qq.com
Supported by:
摘要:
血清微量元素水平的变化与疾病的活动性、治疗效果及患者的营养状态密切相关,肺结核患者常常存在蛋白质-能量型营养不良及必需微量元素的缺乏。微量元素的缺乏与肺结核之间存在明显的双向因果关系,即营养不良可能加剧肺结核的病情,而肺结核的存在又可能导致微量元素的进一步缺乏。笔者结合国内外结核病与微量元素的研究现状,对微量元素作用于结核分枝杆菌的机制、微量元素在肺结核患者中对于疾病诊断、病情严重程度评估、抗结核疗效和微量元素补充在营养治疗等方面的研究进展进行综述,以期增强对肺结核患者微量元素相关营养问题的认识水平和重视程度。
中图分类号:
游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. doi: 10.19982/j.issn.1000-6621.20240369
You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. doi: 10.19982/j.issn.1000-6621.20240369
表1
锌和维生素 A 补充剂对成人肺结核治疗效果分析
第一作者 | 年度 | 国家 | 对象 | 样本量 | 干预方案 | 对照组方案 | 随访时间 | 干预结果 |
---|---|---|---|---|---|---|---|---|
Karyadi[ | 2002 | 印度 尼西亚 | 病原学阳 性肺结核 | 110 | 每日视黄醇(1500IU)、维生素 A (5000IU)和硫酸锌(含锌15mg) | 由乳糖组成安慰剂和抗结核药物 | 6个月 | 前2个月提高抗结核效果 |
Range[ | 2005 | 坦桑 尼亚 | 病原学阳 性肺结核 | 499 | 每日锌片(45mg) | 安慰剂片剂的颜色、形状和大小相同 | 2个月 | 痰培养阴转无影响,微量营养素补充剂可增加体质量 |
Pakasi[ | 2010 | 印度 尼西亚 | 病原学阳 性肺结核 | 255 | 每日剂量锌(15mg)、维生素 A(5000IU)和组合剂量 | 安慰剂和抗结核药物 | 6个月 | 单独或联合补充锌和维生素 A不能缩短阴转时间 |
Lawson[ | 2010 | 尼日 利亚 | 病原学阳 性肺结核 | 350 | 每周锌 (90mg)和每日剂量的维生素 A(5000IU) | 安慰剂与抗结核药物 | 6个月 | 痰菌阴转和影像学改变无差异,谨慎补锌 |
Armijos[ | 2010 | 墨西哥 | 病原学阳 性肺结核 | 39 | 每日维生素 A(5000IU)和锌(50mg),持续 4 个月 | 安慰剂组受试者接受感官相同、匹配的安慰剂 | 6个月 | 补锌有助于痰菌阴转和改善免疫反应 |
Visser[ | 2011 | 南非 | 病原学阳 性肺结核 | 154 | 每日棕榈酸视黄酯 (200000IU) 和锌(15mg),持续 8 周 | 标准抗结核药物 | 2个月 | 痰菌转化、影像学、身高无差异,不影响2个月内的抗结核效果 |
Zolfaghari[ | 2021 | 伊朗 | 病原学阳 性肺结核 | 74 | 隔日1次补锌(50mg) | 安慰剂和抗结核药物 | 6个月 | 前6周有利于痰菌阴转 |
[1] | 中华医学会结核病学分会重症专业委员会. 结核病营养治疗专家共识. 中华结核和呼吸杂志, 2020, 43(1):17-26. doi:10.1016/S2666-5247(22)00359-7. |
[2] | Franco JV, Bongaerts B, Metzendorf MI, et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database Syst Rev, 2024, 6(6):CD015890. doi:10.1002/14651858.CD015890.pub2. |
[3] |
Phelan JJ, Basdeo SA, Tazoll SC, et al. Modulating iron for metabolic support of TB host defense. Front Immunol, 2018, 9:2296. doi:10.3389/fimmu.2018.02296.
pmid: 30374347 |
[4] | Dai Y, Shan W, Yang Q, et al. Biomarkers of iron metabolism facilitate clinical diagnosis in Mycobacterium tuberculosis infection. Thorax, 2019, 74(12):1161-1167. doi:10.1136/thoraxjnl-2018-212557. |
[5] |
Mazumder MK, Rahim MA, Ahmed S, et al. Serum Zinc Concentrations in Patients with Pulmonary Tuberculosis. Mymensingh Med J, 2018, 27(3):536-543.
pmid: 30141443 |
[6] | Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr, 1998, 68(2):447S-463S. doi:10.1093/ajcn/68.2.447S. |
[7] | Liu T, Ramesh A, Ma Z, et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol, 2007, 3(1):60-68. doi:10.1038/nchembio844. |
[8] | Wolschendorf F, Ackart D, Shrestha TB, et al. Copper resis-tance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci, 2011, 108(4):1621-1626. doi:10.1073/pnas.1009261108. |
[9] | Mehri A. Trace Elements in Human Nutrition (Ⅱ)-An Update. Int J Prev Med, 2020, 11:2. doi:10.4103/ijpvm.IJPVM_48_19. |
[10] |
Hussain MI, Ahmed W, Nasir M, et al. Immune modulatory and anti-oxidative effect of selenium against pulmonary tuberculosis. Pak J Pharm Sci, 2019, 32(2(Supplementary)):779-784.
pmid: 31103972 |
[11] | Shan L, Wang Z, Wu L, et al. Statistical and network analyses reveal mechanisms for the enhancement of macrophage immunity by manganese in Mycobacterium tuberculosis infection. Biochem Biophys Rep, 2024, 37:101602. doi:10.1016/j.bbrep.2023.101602. |
[12] |
Neyrolles O, Wolschendorf F, Mitra A, et al. Mycobacteria, metals, and the macrophage. Immunol Rev, 2015, 264(1):249-263. doi:10.1111/imr.12265.
pmid: 25703564 |
[13] | Feng Q, Lin Q, Yao F, et al. Discovering novel biomarkers for diagnosis and treatment monitoring of active pulmonary tuberculosis by ion metabolism analysis. Microbiol Res, 2024, 283:127670. doi:10.1016/j.micres.2024.127670. |
[14] |
Minchella PA, Donkor S, McDermid JM, et al. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis, 2015, 95(3):288-293. doi:10.1016/j.tube.2015.02.042.
pmid: 25764944 |
[15] |
Luo Y, Xue Y, Lin Q, et al. A combination of iron metabolism indexes and tuberculosis-specific antigen/phytohemagglutinin ratio for distinguishing active tuberculosis from latent tuberculosis infection. Int J Infect Dis, 2020, 97:190-196. doi:10.1016/j.ijid.2020.05.109.
pmid: 32497795 |
[16] |
Cernat RI, Mihaescu T, Vornicu M, et al. Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis, 2011, 15(9):1239-1245. doi:10.5588/ijtld.10.0445.
pmid: 21943852 |
[17] | Frediani J, Tukvadze N, Sanikidze E, et al. Serial Iron, Zinc and Copper Status in Adults with Pulmonary Tuberculosis in the Country of Georgia. FASEB J, 2015, 29(S1):729.22. doi:10.1096/fasebj.29.1_supplement.729.22. |
[18] |
Deveci F, Ilhan N. Plasma malondialdehyde and serum trace element concentrations in patients with active pulmonary tuberculosis. Biol Trace Elem Res, 2003, 95(1):29-38. doi:10.1385/BTER:95:1:29.
pmid: 14555797 |
[19] |
Kassu A, Yabutani T, Mahmud ZH, et al. Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr, 2006, 60(5):580-586. doi:10.1038/sj.ejcn.1602352.
pmid: 16340948 |
[20] |
Nizamani P, Afridi HI, Kazi TG, et al. Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients. Toxicol Rep, 2019, 6:1230-1239. doi:10.1016/j.toxrep.2019.11.011.
pmid: 31799123 |
[21] |
Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science, 2012, 338(6108):768-772. doi:10.1126/science.1224577.
pmid: 23139325 |
[22] |
Tashiro K, Yamamoto M, Ushio R, et al. Hepcidin exerts a negative immunological effect in pulmonary tuberculosis without HIV co-infection, prolonging the time to culture-negative. Int J Infect Dis, 2019, 86:47-54. doi:10.1016/j.ijid.2019.06.023.
pmid: 31252187 |
[23] | Waworuntu W, Tanoerahardjo FS, Mallongi A, et al. Serum iron levels in tuberculosis patients and household contacts and its association with natural resistance-associated macrophage protein 1 polymorphism and expression. Clin Respir J, 2023, 17(9):893-904. doi:10.1111/crj.13677. |
[24] | Cioboata R, Vasile CM, Balteanu MA, et al. Evaluating Serum Calcium and Magnesium Levels as Predictive Biomarkers for Tuberculosis and COVID-19 Severity: A Romanian Prospective Study. Int J Mol Sci, 2023, 25(1):418. doi:10.3390/ijms25010418. |
[25] | Agrawal Y, Goyal V, Singh A, et al. Role of anaemia and magnesium levels at the initiation of tuberculosis therapy with sputum conversion among pulmonary tuberculosis patients. J Clin Diagn Res, 2017, 11(6):BC01-BC04. doi:10.7860/JCDR/2017/23734.9975. |
[26] |
Sepehri Z, Arefi D, Mirzaei N, et al. Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol, 2018, 50:161-166. doi:10.1016/j.jtemb.2018.06.024.
pmid: 30262275 |
[27] |
Ciftci TU, Ciftci B, Yis O, et al. Changes in serum selenium, copper, zinc levels and cu/zn ratio in patients with pulmonary tuberculosis during therapy. Biol Trace Elem Res, 2003, 95(1):65-72. doi:10.1385/BTER:95:1:65.
pmid: 14555800 |
[28] |
Mohan G, Kulshreshtha S, Sharma P. Zinc and copper in Indian patients of tuberculosis: impact on antitubercular therapy. Biol Trace Elem Res, 2006, 111(1-3):63-70. doi:10.1385/BTER:111:1:63.
pmid: 16943598 |
[29] |
Choi R, Kim HT, Lim Y, et al. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome. Nutrients, 2015, 7(7):5969-5981. doi:10.3390/nu7075263.
pmid: 26197334 |
[30] | Qi C, Wang H, Liu Z, et al. Oxidative Stress and Trace Elements in Pulmonary Tuberculosis Patients During 6 Months Anti-tuberculosis Treatment. Biol Trace Elem Res, 2021, 199(4):1259-1267. doi:10.1007/s12011-020-02254-0. |
[31] |
Feleke BE, Feleke TE, Mekonnen D, et al. Micronutrient levels of tuberculosis patients during the intensive phase, a prospective cohort study. Clinical Nutrition ESPEN, 2019, 31:56-60. doi:10.1016/j.clnesp.2019.03.001.
pmid: 31060835 |
[32] |
Moraes MLD, Ramalho DMDP, Delogo KN, et al. Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment. J Bras Pneumol, 2014, 40(3):269-278. doi:10.1590/s1806-37132014000300010.
pmid: 25029650 |
[33] | Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care, 2009, 12(6):646-652. doi:10.1097/MCO.0b013e3283312956. |
[34] | Maywald M, Rink L. Zinc in Human Health and Infectious Diseases. Biomolecules, 2022, 12(12):1748. doi:10.3390/biom12121748. |
[35] |
Karyadi E, West CE, Schultink W, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am J Clin Nutr, 2002, 75(4):720-727. doi:10.1093/ajcn/75.4.720.
pmid: 11916759 |
[36] | Range N, Andersen ÅB, Magnussen P, et al. The effect of micronutrient supplementation on treatment outcome in patients with pulmonary tuberculosis: a randomized controlled trial in Mwanza, Tanzania. Trop Med Int Health, 2005, 10(9):826-832. doi:10.1111/j.1365-3156.2005.01463.x. |
[37] | Pakasi TA, Karyadi E, Suratih NMD, et al. Zinc and vitamin A supplementation fails to reduce sputum conversion time in severely malnourished pulmonary tuberculosis patients in Indonesia. Nutr J, 2010, 9(1):41. doi:10.1186/1475-2891-9-41. |
[38] | Lawson L, Thacher TD, Yassin MA, et al. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis: Zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis. Trop Med Int Health, 2010, 15(12):1481-1490. doi:10.1111/j.1365-3156.2010.02638.x. |
[39] | Armijos RX, Weigel MM, Chacon R, et al. Adjunctive micronutrient supplementation for pulmonary tuberculosis. Salud Pública de México, 2010, 52(3):185-189. doi:10.1590/s0036-36342010000300001. |
[40] |
Visser ME, Grewal HM, Swart EC, et al. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. Am J Clin Nutr, 2011, 93(1):93-100. doi:10.3945/ajcn.110.001784.
pmid: 21068353 |
[41] | Zolfaghari B, Ghanbari M, Musavi H, et al. Investigation of Zinc Supplement Impact on the Serum Biochemical Parameters in Pulmonary Tuberculosis: A Double Blinded Placebo Control Trial. Rep Biochem Mol Biol, 2021, 10(2):173-182. doi:10.52547/rbmb.10.2.173. |
[42] | Cabrera Andrade BK, Garcia-Perdomo HA. Effectiveness of micronutrients supplement in patients with active tuberculosis on treatment: Systematic review/Meta-analysis. Complement Ther Med, 2020, 48:102268. doi:10.1016/j.ctim.2019.102268. |
[43] | Wagnew F, Alene KA, Eshetie S, et al. Effects of zinc and vitamin A supplementation on prognostic markers and treatment outcomes of adults with pulmonary tuberculosis: a systematic review and meta-analysis. BMJ Glob Health, 2022, 7(9):e008625. doi:10.1136/bmjgh-2022-008625. |
[44] | Nenni V, Nataprawira HM, Yuniati T. Role of combined zinc, vitamin A, and fish oil supplementation in childhood tuberculosis. Southeast Asian J Trop Med Public Health, 2013, 44(5):854-861. |
[45] |
Lodha R, Mukherjee A, Singh V, et al. Effect of micronutrient supplementation on treatment outcomes in children with intrathoracic tuberculosis: a randomized controlled trial. Am J Clin Nutr, 2014, 100(5):1287-1297. doi:10.3945/ajcn.113.082255.
pmid: 25332327 |
[46] |
Minchella PA, Donkor S, Owolabi O, et al. Complex Anemia in Tuberculosis: The Need to Consider Causes and Timing When Designing Interventions. Clin Infect Dis, 2015, 60(5):764-772. doi:10.1093/cid/ciu945.
pmid: 25428413 |
[47] | Kaushik SR, Sahu S, Guha H, et al. Low circulatory Fe and Se levels with a higher IL-6/IL-10 ratio provide nutritional immunity in tuberculosis. Front Immunol, 2022, 13:985538. doi:10.3389/fimmu.2022.985538. |
[48] |
Cercamondi CI, Stoffel NU, Moretti D, et al. Iron homeostasis during anemia of inflammation: a prospective study of patients with tuberculosis. Blood, 2021, 138(15):1293-1303. doi:10.1182/blood.2020010562.
pmid: 33876222 |
[49] | Devi U, Rao CM, Srivastava VK, et al. Effect of iron supplementation on mild to moderate anaemia in pulmonary tuberculosis. Br J Nutr, 2003, 90(3):541-550. doi:10.1079/bjn2003936. |
[50] | Qian K, Shan L, Shang S, et al. Manganese enhances macrophage defense against Mycobacterium tuberculosis via the STING-TNF signaling pathway. Int Immunopharmacol, 2022, 113(Pt B):109471. doi:10.1016/j.intimp.2022.109471. |
[51] | Qi M, Zhang H, He JQ. Higher blood manganese level associated with increased risk of adult latent tuberculosis infection in the US population. Front Public Health, 2024, 12:1440287. doi:10.3389/fpubh.2024.1440287. |
[52] | 陈志, 梁建琴. 结核病重症患者营养评估及营养支持治疗专家共识. 中国防痨杂志, 2022, 44(5):421-432. doi:10.19982/j.issn.1000-6621.20220041. |
[1] | 刘毅萍, 林友飞, 陈晓红, 潘建光. 一例易被误诊的Castleman肺病并文献复习[J]. 中国防痨杂志, 2025, 47(7): 921-929. |
[2] | 王煜童, 刘宇红, 李亮. 抗结核药物引起的精神心理不良反应研究进展[J]. 中国防痨杂志, 2025, 47(7): 947-953. |
[3] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[4] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[5] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[6] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[7] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[8] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[9] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[10] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[11] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[12] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
[13] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
[14] | 何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. |
[15] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||