中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (9): 1098-1103.doi: 10.19982/j.issn.1000-6621.20240123
收稿日期:2024-04-01
出版日期:2024-09-10
发布日期:2024-08-30
通信作者:
李春华,Email: 基金资助:
Li Wenhan, Yang Jing, Li Chunhua(
)
Received:2024-04-01
Online:2024-09-10
Published:2024-08-30
Contact:
Li Chunhua, Email: Supported by:摘要:
在全球范围内,结核病是单一传染病致死的主要原因,早期诊断肺结核和识别耐药结核病意义重大,但无创精准诊疗仍受限制。随着医疗大数据的发展,人工智能(artificial intelligence, AI)逐渐应用于肺结核研究。AI从影像中挖掘高通量特征,为无创、可重复评估病灶提供了可能。本文就近年来AI技术在肺结核影像诊断与鉴别诊断、病情监测及耐药性预测方面的研究进展进行综述,以期促进肺结核的AI诊断及耐药性预测技术的临床转化,为精准医疗的实现提供支持。
中图分类号:
李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. doi: 10.19982/j.issn.1000-6621.20240123
Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction[J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. doi: 10.19982/j.issn.1000-6621.20240123
| [1] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
| [2] | Lange C, Dheda K, Chesov D, et al. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202):953-966. doi:10.1016/S0140-6736(19)31882-3. |
| [3] | Cunha L, Rodrigues S, Rosa da Costa AM, et al. Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Dev Ind Pharm, 2019, 45(8): 1313-1220. doi:10.1080/03639045.2019.1608231. |
| [4] | Amisha, Malik P, Pathania M, et al. Overview of artificial intelligence in medicine. J Family Med Prim Care, 2019, 8(7): 2328-2331. doi:10.4103/jfmpc.jfmpc_440_19. |
| [5] | Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism, 2017, 69S: S36-S40. doi:10.1016/j.metabol.2017.01.011. |
| [6] | 陈冲, 陈俊, 夏黎明. 人工智能促进医学影像临床应用与研究. 放射学实践, 2024, 39(1): 12-16. doi:10.13609/j.cnki.1000-0313.2024.01.003. |
| [7] | 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用. 中国防痨杂志, 2022, 44(1): 91-94. doi:10.19982/j.issn.1000-6621.20210537. |
| [8] | 吴林玉, 许茂盛. 重视人工智能在医学影像中的研究与应用. 中国中西医结合影像学杂志, 2022, 20(4): 307-309. doi:10.3969/j.issn.1672-0512.2022.04.001. |
| [9] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 2: screening-systematic screening for tuberculosis disease. Geneva: World Health Organization, 2021. |
| [10] | Khan FA, Majidulla A, Tavaziva G, et al. Chest X-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health, 2020, 2(11): e573-e581. doi:10.1016/S2589-7500(20)30221-1. |
| [11] | Yang Y, Xia L, Liu P, et al. A prospective multicenter clinical research study validating the effectiveness and safety of a chest X-ray-based pulmonary tuberculosis screening software JF CXR-1 built on a convolutional neural network algorithm. Front Med (Lausanne), 2023, 10: 1195451. doi:10.3389/fmed.2023.1195451. |
| [12] | Nafisah SI, Muhammad G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput Appl, 2022:1-21. doi:10.1007/s00521-022-07258-6. |
| [13] | Jasmine Pemeena Priyadarsini M, Kotecha K, Rajini GK, et al. Lung Diseases Detection Using Various Deep Learning Algorithms. J Healthc Eng, 2023, 2023:3563696. doi:10.1155/2023/3563696. |
| [14] | Mahbub MK, Biswas M, Gaur L, et al. Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf Sci (N Y), 2022, 592:389-401. doi:10.1016/j.ins.2022.01.062. |
| [15] | Simi Margarat G, Hemalatha G, Mishra A, et al. Early Diagnosis of Tuberculosis Using Deep Learning Approach for IOT Based Healthcare Applications. Comput Intell Neurosci, 2022, 2022:3357508. doi:10.1155/2022/3357508. |
| [16] | Kim K, Lee JH, Je Oh S, et al. AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems. Comput Methods Programs Biomed, 2023, 240: 107643. doi:10.1016/j.cmpb.2023.107643. |
| [17] | 吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探. 中华结核和呼吸杂志, 2021, 44(5): 450-455. doi:10.3760/cma.j.cn112147-20210108-00026. |
| [18] | Yan C, Wang L, Lin J, et al. A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. Eur Radiol, 2022, 32(4):2188-2199. doi:10.1007/s00330-021-08365-z. |
| [19] | 刘雪艳, 王芳, 李春华, 等. 基于深度学习的继发性肺结核CT辅助诊断模型构建及验证. 中国防痨杂志, 2024, 46(3): 279-287. doi:10.19982/j.issn.1000-6621.20230356. |
| [20] | Devasia J, Goswami H, Lakshminarayanan S, et al. Observer Performance Evaluation of a Deep Learning Model for Multilabel Classification of Active Tuberculosis Lung Zone-Wise Manifestations. Cureus, 2023, 15(9):e44954. doi:10.7759/cureus.44954. |
| [21] | Choi SY, Choi A, Baek SE, et al. Effect of multimodal diagnostic approach using deep learning-based automated detection algorithm for active pulmonary tuberculosis. Sci Rep, 2023, 13(1):19794. doi:10.1038/s41598-023-47146-0. |
| [22] | Venkataramana L, Prasad DVV, Saraswathi S, et al. Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques. Med Biol Eng Comput, 2022, 60(9):2681-2691. doi:10.1007/s11517-022-02632-x. |
| [23] | Rajaraman S, Zamzmi G, Folio LR, et al. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Front Genet, 2022, 13:864724. doi:10.3389/fgene.2022.864724. |
| [24] | Devasia J, Goswami H, Lakshminarayanan S, et al. Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: a multi label approach. Sci Rep, 2023, 13(1):887. doi:10.1038/s41598-023-28079-0. |
| [25] | Lee JH, Park S, Hwang EJ, et al. Deep learning-based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. Eur Radiol, 2021, 31(2):1069-1080. doi:10.1007/s00330-020-07219-4. |
| [26] | Kazemzadeh S, Yu J, Jamshy S, et al. Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists. Radiology, 2023, 306(1):124-137. doi:10.1148/radiol.212213. |
| [27] | Zhou W, Cheng G, Zhang Z, et al. Deep learning-based pulmonary tuberculosis automated detection on chest radiography: large-scale independent testing. Quant Imaging Med Surg, 2022, 12(4):2344-2355. doi:10.21037/qims-21-676. |
| [28] | Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics investigations. Phys Med Biol, 2020, 65(24):24TR02. doi:10.1088/1361-6560/aba798. |
| [29] | Feng B, Chen X, Chen Y, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol, 2020, 30(12):6497-6507. doi:10.1007/s00330-020-07024-z. |
| [30] | Feng B, Chen X, Chen Y, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule. Eur J Radiol, 2020, 128:109022. doi:10.1016/j.ejrad.2020.109022. |
| [31] | Tan H, Bates JHT, Matthew Kinsey C. Discriminating TB lung nodules from early lung cancers using deep learning. BMC Med Inform Decis Mak, 2022, 22(1):161. doi:10.1186/s12911-022-01904-8. |
| [32] | 韩喜琴, 王敬, 谭秋清, 等. 93例非结核分枝杆菌肺病临床分析. 中国防痨杂志, 2023, 45(4): 355-361. doi:10.19982/j.issn.1000-6621.20220519. |
| [33] | Park M, Lee Y, Kim S, et al. Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning. BMC Infect Dis, 2023, 23(1):32. doi:10.1186/s12879-023-07996-5. |
| [34] | Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13):4293-4306. doi:10.1007/s00259-021-05432-x. |
| [35] | Ying C, Li X, Lv S, et al. T-SPOT with CT image analysis based on deep learning for early differential diagnosis of nontuberculous mycobacteria pulmonary disease and pulmonary tuberculosis. Int J Infect Dis, 2022, 125:42-50. doi:10.1016/j.ijid.2022.09.031. |
| [36] | Gao Y, Zhang Y, Hu C, et al. Distinguishing infectivity in patients with pulmonary tuberculosis using deep learning. Front Public Health, 2023, 11:1247141. doi:10.3389/fpubh.2023.1247141. |
| [37] | Nijiati M, Zhou R, Damaola M, et al. Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis. Front Mol Biosci, 2022, 9:1086047. doi:10.3389/fmolb.2022.1086047. |
| [38] | Higashiguchi M, Nishioka K, Kimura H, et al. Prediction of the duration needed to achieve culture negativity in patients with active pulmonary tuberculosis using convolutional neural networks and chest radiography. Respir Investig, 2021, 59(4):421-427. doi:10.1016/j.resinv.2021.01.004. |
| [39] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169:111180. doi:10.1016/j.ejrad.2023.111180. |
| [40] | 王泊宁, 李涛, 陈伟. 耐药结核病经济负担研究进展. 中国防痨杂志, 2023, 45(6): 607-612. doi:10.19982/j.issn.1000-6621.20230018. |
| [41] | Gao XW, Qian Y. Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques. Mol Pharm, 2018, 15(10):4326-4335. doi:10.1021/acs.molpharmaceut.7b00875. |
| [42] | Jaeger S, Juarez-Espinosa OH, Candemir S, et al. Detecting drug-resistant tuberculosis in chest radiographs. Int J Comput Assist Radiol Surg, 2018, 13(12):1915-1925. doi:10.1007/s11548-018-1857-9. |
| [43] | Karki M, Kantipudi K, Yu H, et al. Identifying Drug-Resistant Tuberculosis in Chest Radiographs: Evaluation of CNN Architectures and Training Strategies. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021:2964-2967. doi:10.1109/EMBC46164.2021.9630189. |
| [44] | Karki M, Kantipudi K, Yang F, et al. Generalization Challenges in Drug-Resistant Tuberculosis Detection from Chest X-rays. Diagnostics (Basel), 2022, 12(1):188. doi:10.3390/diagnostics12010188. |
| [45] | Ureta J, Shrestha A. Identifying drug-resistant tuberculosis from chest X-ray images using a simple convolutional neural network. J Phys Conf Ser, 2021, 2071(1): 012001. doi:10.1088/1742-6596/2071/1/012001. |
| [46] | Tulo SK, Ramu P, Swaminathan R. An Automated Approach to Differentiate Drug Resistant Tuberculosis in Chest X-ray Images Using Projection Profiling and Mediastinal Features. Stud Health Technol Inform, 2021, 281:512-513. doi:10.3233/SHTI210220. |
| [47] | Prasitpuriprecha C, Jantama SS, Preeprem T, et al. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel), 2022, 16(1):13. doi:10.3390/ph16010013. |
| [48] | Sethanan K, Pitakaso R, Srichok T, et al. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification. Front Med (Lausanne), 2023, 10:1122222. doi:10.3389/fmed.2023.1122222. |
| [49] | Nijiati M, Guo L, Tuersun A, et al. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience, 2023, 26(11):108326. doi:10.1016/j.isci.2023.108326. |
| [50] | Wells L, Bednarz T. Explainable AI and Reinforcement Learning-A Systematic Review of Current Approaches and Trends. Front Artif Intell, 2021, 4:550030. doi:10.3389/frai.2021.550030. |
| [51] | Liang S, Ma J, Wang G, et al. The Application of Artificial Intelligence in the Diagnosis and Drug Resistance Prediction of Pulmonary Tuberculosis. Front Med (Lausanne), 2022, 9:935080. doi:10.3389/fmed.2022.935080. |
| [52] | Acharya V, Dhiman G, Prakasha K, et al. AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model. Comput Intell Neurosci, 2022, 2022: 2399428. doi:10.1155/2022/2399428. |
| [1] | 王琳, 屈妍. 多重耐药菌医院感染防控研究进展[J]. 中国防痨杂志, 2025, 47(9): 1196-1203. |
| [2] | 赖晓宇, 段鸿飞, 陈珣珣, 郭卉欣, 廖庆华, 陈茜, 梁丹. 结核性葡萄膜炎临床特征、诊断策略与分级标准研究进展[J]. 中国防痨杂志, 2025, 47(9): 1204-1211. |
| [3] | 王慧娟, 程瑞霞, 许佳. 肺结核患者服药依从性研究进展[J]. 中国防痨杂志, 2025, 47(9): 1212-1219. |
| [4] | 陈丽瑶, 彭逍, 刘原园, 石金, 郭永丽, 鲁洁. 铁死亡的分子机制及其在结核病诊疗中的潜在应用[J]. 中国防痨杂志, 2025, 47(9): 1227-1232. |
| [5] | 朱庆东, 赵春艳, 谢周华, 宋树林, 宋畅. 基于人工智能的CT影像组学在结核病诊断和治疗反应监测中应用的研究进展[J]. 中国防痨杂志, 2025, 47(8): 1068-1076. |
| [6] | 孟庆琳, 王云霞, 唐艳, 刘二勇. 国内外结核病患者心理支持现状分析[J]. 中国防痨杂志, 2025, 47(8): 981-985. |
| [7] | 刘毅萍, 林友飞, 陈晓红, 潘建光. 一例易被误诊的Castleman肺病并文献复习[J]. 中国防痨杂志, 2025, 47(7): 921-929. |
| [8] | 王煜童, 刘宇红, 李亮. 抗结核药物引起的精神心理不良反应研究进展[J]. 中国防痨杂志, 2025, 47(7): 947-953. |
| [9] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
| [10] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
| [11] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
| [12] | 陶婧, 谢梦娇, 宋杨, 魏强. 人类粪便样本采集与保存研究进展[J]. 中国防痨杂志, 2025, 47(10): 1378-1385. |
| [13] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
| [14] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
| [15] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可