中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (1): 116-122.doi: 10.19982/j.issn.1000-6621.20220292
• 综述 • 上一篇
收稿日期:
2022-08-03
出版日期:
2023-01-10
发布日期:
2022-12-30
通信作者:
初乃惠
E-mail:dongchu1994@sina.com
基金资助:
Shang Yuanyuan1, Nie Wenjuan1, Huang Hairong2, Chu Naihui1()
Received:
2022-08-03
Online:
2023-01-10
Published:
2022-12-30
Contact:
Chu Naihui
E-mail:dongchu1994@sina.com
Supported by:
摘要:
耐多药/利福平耐药结核病(multidrug-/rifampicin-resistant tuberculosis,MDR/RR-TB)和广泛耐药结核病(extensively drug-resistant tuberculosis,XDR-TB)的出现对世界范围内结核病的控制构成了巨大威胁。由于缺乏有效的药物,MDR-TB患者的治疗成功率仅为59%,XDR-TB患者的治疗成功率不足50%。近年来,新型抗结核药物贝达喹啉(bedaquiline,Bdq)、老药新用药物氯法齐明(clofazimine,Cfz)在MDR/RR-TB和XDR-TB患者中的应用可以明显改善患者的治疗结局。两种药物均通过损害分枝杆菌能量代谢来发挥作用,尽管存在交叉耐药,但在临床治疗中仍然被临床医生联合使用。因此,在临床应用过程中除了需要关注药物的不良反应外,也应关注Bdq和Cfz的耐药情况。笔者旨在总结Bdq和Cfz耐药相关机制,以及临床治疗中Bdq和Cfz耐药性的出现情况,讨论如何延缓Bdq和Cfz获得性耐药的增加和传播。
中图分类号:
尚园园, 聂文娟, 黄海荣, 初乃惠. 抗结核药物贝达喹啉与氯法齐明耐药的研究现状[J]. 中国防痨杂志, 2023, 45(1): 116-122. doi: 10.19982/j.issn.1000-6621.20220292
Shang Yuanyuan, Nie Wenjuan, Huang Hairong, Chu Naihui. Research status of drug resistance of antituberculosis drugs bedaquiline and clofazimine[J]. Chinese Journal of Antituberculosis, 2023, 45(1): 116-122. doi: 10.19982/j.issn.1000-6621.20220292
表2
贝达喹啉和氯法齐明的基因突变位点
药物 | 基因 | 突变基因 |
---|---|---|
贝达喹啉 | atpE | A63P[ |
氯法齐明 | Rv1979c | V351A[ |
氯法齐明 | Rv1453 | res-sacB-hyg-res基因座缺失[ |
贝达喹啉与氯法齐明 | Rv0678 | S53L[ |
贝达喹啉与氯法齐明 | Rv2535c | c158t[ |
[1] | World Health Organization.Global tuberculosis report 2020. Geneva: Word Health Organization, 2020. |
[2] | World Health Organization. Global tuberculosis report 2021. Geneva: Word Health Organization, 2021. |
[3] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[4] |
Nimmo C, Millard J, van Dorp L, et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe, 2020, 1(4): e165-e174. doi:10.1016/S2666-5247(20)30031-8.
doi: 10.1016/S2666-5247(20)30031-8. |
[5] |
Williams K, Minkowski A, Amoabeng O, et al. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother, 2012, 56(6): 3114-3120. doi:10.1128/AAC.00384-12.2.
doi: 10.1128/AAC.00384-12 pmid: 22470112 |
[6] |
Nunn AJ, Phillips PPJ, Meredith SK, et al. A Trial of a Shorter Regimen for Rifampin-Resistant Tuberculosis. N Engl J Med, 2019, 380(13): 1201-1213. doi:10.1056/NEJMoa1811867.
doi: 10.1056/NEJMoa1811867. URL |
[7] |
Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol, 2007, 3(6): 323-324. doi:10.1038/nchembio884.
doi: 10.1038/nchembio884. pmid: 17496888 |
[8] |
Preiss L, Langer JD, Yildiz Ö, et al. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv, 2015, 1(4): e1500106. doi:10.1126/sciadv.1500106.
doi: 10.1126/sciadv.1500106. URL |
[9] |
Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J, 2017, 49(5):1700387. doi:10.1183/13993003.00387-2017.
doi: 10.1183/13993003.00387-2017. URL |
[10] |
Schnippel K, Ndjeka N, Maartens G, et al. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med, 2018, 6(9): 699-706. doi:10.1016/S2213-2600(18)30235-2.
doi: 10.1016/S2213-2600(18)30235-2 pmid: 30001994 |
[11] |
Honeyborne I, Lipman M, Zumla A, et al. The changing treatment landscape for MDR/XDR-TB-Can current clinical trials revolutionise and inform a brave new world? Int J Infect Dis, 2019, 80S: S23-S28. doi:10.1016/j.ijid.2019.02.006.
doi: 10.1016/j.ijid.2019.02.006. |
[12] |
Akkerman O, Aleksa A, Alffenaar JW, et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. Int J Infect Dis, 2019, 83: 72-76. doi:10.1016/j.ijid.2019.03.036.
doi: S1201-9712(19)30165-1 pmid: 30953827 |
[13] |
Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010, 182(5): 684-692. doi:10.1164/rccm.201001-0077OC.
doi: 10.1164/rccm.201001-0077OC. URL |
[14] |
Duan H, Chen X, Li Z, et al. Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial. Clin Microbiol Infect, 2019, 25(2): 190-195. doi:10.1016/j.cmi.2018.07.012.
doi: 10.1016/j.cmi.2018.07.012. |
[15] |
Tang S, Yao L, Hao X, et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis, 2015, 60(9): 1361-1367. doi:10.1093/cid/civ027.
doi: 10.1093/cid/civ027 pmid: 25605283 |
[16] |
Lamprecht DA, Finin PM, Rahman MA, et al. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun, 2016, 7: 12393. doi:10.1038/ncomms12393.
doi: 10.1038/ncomms12393 pmid: 27506290 |
[17] |
Yano T, Kassovska-Bratinova S, Teh JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011, 286(12): 10276-10287. doi:10.1074/jbc.M110.200501.
doi: 10.1074/jbc.M110.200501 pmid: 21193400 |
[18] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018, 105: 1353-1359. doi:10.1016/j.biopha.2018.06.023.
doi: S0753-3322(18)32560-5 pmid: 30021373 |
[19] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9): 2507-2510. doi:10.1093/jac/dkv150.
doi: 10.1093/jac/dkv150 pmid: 26045528 |
[20] |
Zheng H, He W, Jiao W, et al. Molecular characterization of multidrug-resistant tuberculosis against levofloxacin, moxifloxacin, bedaquiline, linezolid, clofazimine, and delamanid in southwest of China. BMC Infect Dis, 2021, 21(1): 330. doi:10.1186/s12879-021-06024-8.
doi: 10.1186/s12879-021-06024-8 pmid: 33832459 |
[21] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
doi: 10.1126/science.1106753. pmid: 15591164 |
[22] |
Huitric E, Verhasselt P, Koul A, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother, 2010, 54(3): 1022-1028. doi:10.1128/AAC.01611-09.
doi: 10.1128/AAC.01611-09 pmid: 20038615 |
[23] |
Liu Y, Gao J, Du J, et al. Acquisition of clofazimine resis-tance following bedaquiline treatment for multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 102: 392-396. doi:10.1016/j.ijid.2020.10.081.
doi: 10.1016/j.ijid.2020.10.081. URL |
[24] |
Xu J, Wang B, Hu M, et al. Primary Clofazimine and Beda-quiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother, 2017, 61(6): e00239-17. doi:10.1128/AAC.00239-17.
doi: 10.1128/AAC.00239-17. |
[25] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28: 136-142. doi:10.1016/j.ebiom.2018.01.005.
doi: S2352-3964(18)30005-7 pmid: 29337135 |
[26] |
Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 2017, 72(7): 1901-1906. doi:10.1093/jac/dkx094.
doi: 10.1093/jac/dkx094 pmid: 28387862 |
[27] |
Migliori GB, Falzon D, Marks GB, et al. Commemorating World Tuberculosis Day 2022: recent ERJ articles of critical relevance to ending TB and saving lives. Eur Respir J, 2022, 59(3): 2200149. doi:10.1183/13993003.00149-2022.
doi: 10.1183/13993003.00149-2022. URL |
[28] |
Centers for Disease Control and Prevention. Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis. MMWR Recomm Rep, 2013, 62(RR-09): 1-12.
pmid: 24157696 |
[29] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014, 371(8): 723-732. doi:10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865. URL |
[30] |
Pontali E, Sotgiu G, D’Ambrosio L, et al. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J, 2016, 47(2): 394-402. doi:10.1183/13993003.01891-2015.
doi: 10.1183/13993003.01891-2015 pmid: 26828052 |
[31] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019, 63(9): e00915-19. doi:10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19. |
[32] |
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(5): 2979-2981. doi:10.1128/AAC.00037-14.
doi: 10.1128/AAC.00037-14 pmid: 24590481 |
[33] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8): 4590-4599. doi:10.1128/AAC.00753-16.
doi: 10.1128/AAC.00753-16 pmid: 27185800 |
[34] |
Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci U S A, 2005, 102(52): 18769-18770. doi:10.1073/pnas.0509776102.
doi: 10.1073/pnas.0509776102. pmid: 16365283 |
[35] |
Van Rie A, Warren R, Richardson M, et al. Classification of drug-resistant tuberculosis in an epidemic area. Lancet, 2000, 356(9223): 22-25. doi:10.1016/S0140-6736(00)02429-6.
doi: 10.1016/S0140-6736(00)02429-6. pmid: 10892760 |
[36] |
Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis, 2015, 6(4):170-184. doi:10.1177/2040622315582325.
doi: 10.1177/2040622315582325 pmid: 26137207 |
[37] |
Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother, 2006, 50(8): 2853-2856. doi:10.1128/AAC.00244-06.
doi: 10.1128/AAC.00244-06. pmid: 16870785 |
[38] |
Ismail N, Rivière E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe, 2021, 2(11): e604-e616.doi:10.1016/s2666-5247(21)00175-0.
doi: 10.1016/s2666-5247(21)00175-0. |
[39] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017, 61(10): e00900-17. doi:10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17. |
[40] |
Phelan J, Coll F, McNerney R, et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med, 2016, 14: 31. doi:10.1186/s12916-016-0575-9.
doi: 10.1186/s12916-016-0575-9 pmid: 27005572 |
[41] |
Li Y, Fu L, Zhang W, et al. The Transcription Factor Rv1453 Regulates the Expression of qor and Confers Resistant to Clofazimine in Mycobacterium tuberculosis. Infect Drug Resist, 2021, 14: 3937-3948. doi:10.2147/IDR.S324043.
doi: 10.2147/IDR.S324043. URL |
[42] |
Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4): 496-506. doi:10.1016/S1473-3099(21)00470-9.
doi: 10.1016/S1473-3099(21)00470-9. URL |
[43] |
Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis (Edinb), 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003.
doi: 10.1016/j.tube.2008.08.003. URL |
[44] |
Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog, 2013, 9(1): e1003120. doi:10.1371/journal.ppat.1003120.
doi: 10.1371/journal.ppat.1003120. |
[45] |
Fang Z, Sampson SL, Warren RM, et al. Iron acquisition strategies in mycobacteria. Tuberculosis (Edinb), 2015, 95(2): 123-130. doi:10.1016/j.tube.2015.01.004.
doi: 10.1016/j.tube.2015.01.004. URL |
[46] |
Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaqui-line. J Antimicrob Chemother, 2017, 72(3): 684-690. doi:10.1093/jac/dkw502.
doi: 10.1093/jac/dkw502 pmid: 28031270 |
[47] |
Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7): e102135. doi:10.1371/journal.pone.0102135.
doi: 10.1371/journal.pone.0102135. |
[48] |
Gupta S, Tyagi S, Bishai WR. Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother, 2015, 59(1): 673-676. doi:10.1128/AAC.04019-14.
doi: 10.1128/AAC.04019-14. URL |
[49] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8): 2031-2043. doi:10.1093/jac/dkaa136.
doi: 10.1093/jac/dkaa136 pmid: 32361756 |
[50] |
D’Ambrosio L, Tadolini M, Dupasquier S, et al. ERS/WHO tuberculosis consilium: reporting of the initial 10 cases. Eur Respir J, 2014, 43(1): 286-289. doi:10.1183/09031936.00125813.
doi: 10.1183/09031936.00125813 pmid: 24072213 |
[51] |
Ioerger TR, Feng Y, Chen X, et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Geno-mics, 2010, 11: 670. doi:10.1186/1471-2164-11-670.
doi: 10.1186/1471-2164-11-670. |
[52] |
Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother, 2019, 63(1): e01316-18. doi:10.1128/AAC.01316-18.
doi: 10.1128/AAC.01316-18. |
[53] |
Alexander DC, Vasireddy R, Vasireddy S, et al. Emergence of mmpT 5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol, 2017, 55(2): 574-584. doi:10.1128/JCM.02087-16.
doi: 10.1128/JCM.02087-16 pmid: 27927925 |
[54] |
Bloemberg GV, Keller PM, Stucki D, et al. Acquired Resis-tance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N Engl J Med, 2015, 373(20):1986-1988. doi:10.1056/NEJMc1505196.
doi: 10.1056/NEJMc1505196. URL |
[55] |
de Steenwinkel JE, de Knegt GJ, ten Kate MT, et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother, 2010, 65(12): 2582-2589. doi:10.1093/jac/dkq374.
doi: 10.1093/jac/dkq374 pmid: 20947621 |
[56] |
Maartens G, Brill MJE, Pandie M, et al. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2018, 22(1): 26-29. doi:10.5588/ijtld.17.0615.
doi: 10.5588/ijtld.17.0615 pmid: 29145924 |
[57] |
Gour A, Dogra A, Sharma S, et al. Effect of Disease State on the Pharmacokinetics of Bedaquiline in Renal-Impaired and Diabetic Rats. ACS Omega, 2021, 6(10): 6934-6941. doi:10.1021/acsomega.0c06165.
doi: 10.1021/acsomega.0c06165 pmid: 33748607 |
[58] |
Alghamdi WA, Al-Shaer MH, Kipiani M, et al. Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with multidrug-resistant tuberculosis. J Antimicrob Chemother, 2021, 76(4): 1019-1024. doi:10.1093/jac/dkaa550.
doi: 10.1093/jac/dkaa550 pmid: 33378452 |
[59] |
Haas DW, Abdelwahab MT, van Beek SW, et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis, 226(1): 147-156. doi:10.1093/infdis/jiac024.
doi: 10.1093/infdis/jiac024. URL |
[60] |
Rivera B, Castellsagué E, Bah I, et al. Biallelic NTHL1 Mutations in a Woman with Multiple Primary Tumors. N Engl J Med, 2015, 373(20): 1985-1986. doi:10.1056/NEJMc1506878.
doi: 10.1056/NEJMc1506878. URL |
[61] |
de Vos M, Ley SD, Wiggins KB, et al. Bedaquiline Microhete-roresistance after Cessation of Tuberculosis Treatment. N Engl J Med, 2019, 380(22): 2178-2180. doi:10.1056/NEJMc1815121.
doi: 10.1056/NEJMc1815121. URL |
[62] |
Li J, Yang G, Cai Q, et al. Safety, efficacy, and serum concentration monitoring of bedaquiline in Chinese patients with multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 110: 179-186. doi:10.1016/j.ijid.2021.07.038.
doi: 10.1016/j.ijid.2021.07.038 pmid: 34293490 |
[63] |
Svensson EM, Karlsson MO. Modelling of mycobacterial load reveals bedaquiline’s exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother, 2017, 72(12): 3398-3405. doi:10.1093/jac/dkx317.
doi: 10.1093/jac/dkx317 pmid: 28961790 |
[64] |
Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis, 2016, 63(7): e147-e195. doi:10.1093/cid/ciw376.
doi: 10.1093/cid/ciw376. |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||